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Abstract

Teixeira,Pedro Abdalla; Tomei, Carlos (Advisor). Non-Asymptotic
Random Matrix Theory and The Small Ball Method. Rio
de Janeiro, 2020. 86p. Dissertação de Mestrado – Departamento de
Matemática, Pontifícia Universidade Católica do Rio de Janeiro.

Motivated by problems in the field of signal recovery by convex program-
ming, the aim of this work is to provide a careful analysis of the celebrated
small ball method and its connections with the non-asymptotic theory of ran-
dom matrices. In particular, the study of the conic singular values of random
matrices will play a key role to analyze such problems.

Keywords
Random Matrices; Singular Values; Convex Recovery; Small Ball

Method.
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Resumo

Teixeira,Pedro Abdalla; Tomei, Carlos. Teoria não assintótica de
matrizes aleatórias e o método da bola pequena . Rio de Janeiro,
2020. 86p. Dissertação de Mestrado – Departamento de Matemática,
Pontifícia Universidade Católica do Rio de Janeiro.

Motivado por problemas no campo da recuperação de sinais por progra-
mação convexa, o objetivo deste trabalho é fornecer uma análise precisa do
método das bola pequena e suas conexões com a teoria não assintótica das
matrizes aleatórias. Em particular, o estudo dos valores singulares cônicos de
matrizes aleatórias desempenhará um papel fundamental na análise de tais
problemas.

Palavras-chave
Matrizes Aleatórias; Valores Singulares; Recuperação Convexa;

Método da Bola Pequena.
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"If people do not believe that mathematics is
simple, it is only because they do not realize

how complicated life is"

John Von Neumann, .
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1
Introduction

1.1
Asymptotic x Non-asymptotic Random Matrix Theory

Random matrices were introduced by Wishart in 1928 in the field of
statistics [69]. Their popularity increased with the remarkable work of the
physicist E.P.Wigner, who used random matrices to describe atomic levels in
nuclear energy [68]. Since then, the asymptotic theory of random matrices has
been connected to many different fields of mathematics such as analytic number
theory [46], integrable systems [5], combinatorics [4], operator theory and
orthogonal polynomials [17], mathematical physics and dynamical systems [1]
among others. For an excellent introductory text we refer the reader to [40].

Asymptotic random matrix theory considers the asymptotic properties of
random matrices in a parameter, frequently the increasing size of the matrix.
Here is one example.

Theorem 1.1 (Bai-Yin’s law [3]) Let A be an m × n random matrix with
entries given by independent copies of a distribution with zero mean, unit
variance and finite fourth moment. Let s1(A) ≥ sn(A) be the largest and
smallest singular values of A. As n/m→ c ∈ [0, 1],

s1(A)√
m
→ 1 +

√
c,

sn(A)√
m
→ 1−

√
c almost surely.

The theorem does not provide information about matrices with given dimen-
sions n,m < ∞ or about the convergence rate. In contrast, consider the fol-
lowing non-asymptotic result.

Theorem 1.2 (Gaussian deviation [16]). Let A be an m × n random matrix
with independent entries satisfying the Gaussian N(0, 1) distribution. Then,
for every t ≥ 0, with probability at least 1− 2e−t2,

√
m−

√
n− t ≤ sn(A) ≤ s1(A) ≤

√
m+

√
n+ t .

This is a quantitative information about the extrema of the set of singular
values. On the other hand, we lost generality in the specification of the entries,
as well as the the limit of such extrema, as in Theorem 1.1.
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Chapter 1. Introduction 11

The non-asymptotic theory of random matrices relates to the geometry
of Banach spaces and local operator theory [16], combinatorics [58], [15],
numerical linear algebra [59], compressed sensing [22], mathematical statistics
and data science [63], [65] and [12]. For excellent introductory texts in the so
called high dimensional probability, see [63] and [9].

1.2
The Small Ball Method

The small ball method, developed by S. Mendelson and V. Koltchinskii,
is a strategy to provide lower bounds of an empirical process under general
assumptions [31]. The method originally was used on a problem related to
sn, the smallest singular value of a random matrix. Subsequent applications
mainly by S. Mendelson and his co-authors consider a large variety of issues
in statistical learning theory and sparse recovery of data [42], [43], [33], [34],
compressed sensing [30] and the geometry of Banach spaces [41].

We point out three difficulties in non-asymptotic random matrix theory.
Techniques associated to the phenomenon of concentration of measure are
rarely valid for heavy tail distributions. The small ball method circumvents
the use of concentration.

The second is related to geometric constraints. As we shall see in many
sparse recovery problems, the error of an approximation can be quantified from
lower bounds for the smallest conic singular value: given a cone K, the smallest
conic singular value of a matrix A ∈ Rm×n is

sn(A,K) = inf
x∈K∩Sn−1

‖Ax‖2 .

When K is the full space, sn(A,K) = sn(A). The small ball method is very
useful in situations involving arbitrary cones, as are some techniques from
stochastic process theory.

Moreover, the small ball method relies heavily on the independence of
the underlying matrix rows.

1.3
Scope and content of the dissertation

We consider a general framework for recovery problems by means of
convex optimization, following the use of the small ball method to the estimates
for extremal singular values introduced by J.Tropp in [60].
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Chapter 1. Introduction 12

Chapter 2 develops estimates for the usual (classical) singular values of
random matrices with entries satisfying sub-gaussian distributions. Chapter 3
highlights unique features of Gaussian matrices. With such tools, in Chapter
4, we provide a rigorous treatment of a large class of recovery problems using
the small ball method. Finally in Chapter 5 we apply the small ball method
to the classical phase retrieval problem.

1.4
Basic notation

For a probability space (Ω,Σ,P) and a random variable X : Ω → R, we
denote the expectation (mean) by EX and the variance by V ar(X). All sets
in this dissertation will be assumed to be measurable.

Let Lp = Lp(Ω,Σ,P) be the standard Lp spaces and ‖X‖p = (E[|X|p])1/p

the associate norm or quasi-norm (depending on the value of p > 0). A random
variable X is (essentially) bounded if ‖X‖∞ < ∞. The moment generating
function (MGF) MX(λ) = EeλX is the (real) Laplace transform of X with
respect to the measure P.

Random vectors X = (X1, . . . , Xn) ∈ Rn have mean µ =
(EX1, . . . ,EXn). A standard Gaussian vector g = (g1, . . . , gk) ∈ Rk has
entries given by independent standard normal variables gi ∼ N(0, 1).

More generally, a Gaussian vector is a random vector X ∈ Rn for which
there exists a matrix Γ ∈ Rn×k such that

X = Γg + µ,

where µ is the mean of X and g is a standard Gaussian vector.
We denote by ‖X‖2 the standard Euclidean norm in Rn associated to the

standard inner product 〈., .〉.
Endow Rn and Rm with the `p and `q norms. Let Bn

p ⊂ Rn be the unit
ball in Rn with the `p norm and set

‖A‖p→q = sup
x∈Bnp

‖Ax‖q.

The frequent case ‖A‖2→2 will be denoted by ‖A‖. We refer to this norm
as operator norm.

Let f, g be functions assuming values in some common domain.

1. (Big O): f = O(g) if exists α > 0 such that |f(x)| ≤ α|g(x)|.

2. (Big Θ): f = Θ(g) if f = O(g) and g = O(f).
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Chapter 1. Introduction 13

We say that f, g are equivalent if f = Θ(g).
Constants may change along a calculation: in this case, we replace

C by other letters (as C1). If the constant does not depend on any other
parameter, we refer to it as an absolute constant. For a natural number n,
denote [n] = {1, 2, . . . , n}. For a set P , denote IP (x) by its indicator function.
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2
Concentration Inequalities in the Sub-gaussian Context

2.1
The Sub-gaussian Distributions

We start with a simple goal. We search for bounds that inform how
a random variable X concentrates near to the mean, in other words, an
expression of the form

P(|X − µ| > t) ≤ ε(t),

where ε(t) is a error function that converge fast, possibly exponentially, to
zero. A systematic approach to this kind of concentration inequalities can be
found in [9]. We consider the case when X is the sum of random variables Xi.
A toy example is the following situation [63].

Question 2.1 Toss a fair coin N times. What is the probability of obtaining
at least 3

4N heads?

Let SN denote the number of heads. Clearly, SN has mean N
2 and variance N

4 .
By the Chebyshev inequality (see the Appendix),

P(SN ≥
3
4N) ≤ P(|SN −

N

2 | ≥
N

4 ) ≤ 4
N
.

In this example, the decay in N is linear. If instead SN satisfied a Gaussian
distribution, the decay would be much faster.

Proposition 2.2 (Tails for the Standard Gaussian Distribution). Let g be a
standard Gaussian variable. Then, for every t > 0,

P(|g| ≥ t) ≤ min {1,
√

2
π

1
t
} e−t2/2. (2-1)

Proof. By symmetry,

P(|g| ≥ t) = 2√
2π

∫ ∞
t

e−x
2/2 dx .

A change of variables yields
∫ ∞
t

e−x
2/2dx =

∫ ∞
0

e−(x+t)2/2dx = e−t
2/2
∫ ∞

0
e−xte−x

2/2dx .
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Chapter 2. Concentration Inequalities in the Sub-gaussian Context 15

From the estimates e−xt ≤ 1 and e−x2/2 ≤ 1 we obtain either
∫ ∞
t

e−x
2/2dx ≤ e−t

2/2
∫ ∞

0
e−x

2/2dx =
√
π

2 e
−t2/2,

or ∫ ∞
t

e−x
2/2dx ≤ e−t

2/2
∫ ∞

0
e−xtdx = 1

t
e−t

2/2.

�

The standard Gaussian distribution concentrates heavily around the
mean. An analogous result holds for Gaussian random variables. Since the
sum of independent Gaussians is Gaussian, the sum concentrates equally well.

The celebrated central limit theorem is frequently used to obtain concen-
tration bounds. Since we are interested in non-asymptotic results, we need a
quantitative version of it.

Theorem 2.3 (Berry-Esseen central limit Theorem [18] ). Let X1,X2 . . . be a
sequence of i.i.d random variables with mean µ and variance σ2. Consider SN ,
the sum of the first N random variables Xi and the normalized sum

ZN = SN − ESN√
V ar(SN)

.

Then, for every N and for every t ∈ R,

|P(ZN ≥ t)− P(g ≥ t)| ≤ ρ√
N
.

Here ρ = E[|X1 − µ|3]/σ3 and g ∼ N(0, 1).

We show the sharpness of the theorem in an example. For even N , the proba-
bility of getting exactly N/2 heads is, by the standard Stirling approximation,

P(SN = N

2 ) = 2−N
(
N

N/2

)
= Θ( 1√

N
).

Hence P(ZN = 0) = Θ( 1√
N

). On the other hand, P(g = 0) = 0, so that the
error must be of order Θ( 1√

N
).

The bound O(1/
√
N) is far from our desired exponential decay, so this

theorem actually will be of little use. For the best known constant ρ, see [48].
Inspired by the strong concentration of the Gaussian variable, we restrict

our attention to a special class of random variables that possess a fast decay.
We list some properties of such variables: the proofs follow [63].

Proposition 2.4 (Sub-gaussian Properties) Let X be a random variable.
Then the following properties are equivalent. Each holds for a constant Ki > 0.
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Chapter 2. Concentration Inequalities in the Sub-gaussian Context 16

I - The tails of X satisfy

∀t ≥ 0, P(|X| ≥ t) ≤ 2e−t2/K1 .

II - The moments of X satisfy

∀p ≥ 1, ‖X‖p ≤ K2
√
p.

III - The MGF of X2 satisfies

∀λ ∈ R, |λ| ≤ K−1
3 , Eeλ2X2 ≤ eK

2
3λ

2
.

IV - The MGF of X2 is bounded at some point

EeX2/K2
4 ≤ 2.

V - If X has zero mean, the following is also equivalent to all above

∀λ ∈ R, EeλX ≤ eK
2
5λ

2
.

Proof. I ⇒ II. Suppose property I holds. By homogeneity, we may assume
K1 = 1. Then

E|X|p =
∫ ∞

0
P(|X|p ≥ u)du (integral layer cake identity, see the Appendix)

=
∫ ∞

0
P(|X| ≥ t)ptp−1dt (change variables u = tp)

≤
∫ ∞

0
2e−t2ptp−1dt (property I)

= pΓ(p/2) (set t2 = s in the expression for the Gamma function)
≤ p(p/2)p/2 (as Γ(x) ≤ xx).

Now take the p-th root to get II with K2 ≤ 2.
II ⇒ III. Assume again by homogeneity that K2 = 1. From the Taylor series
expansion of the exponential,

Eeλ2X2 = 1 +
∞∑
p=1

λ2p E[X2p]
p! ,

from property II, E[X2p] ≤ (2p)p and by the expansion of ep, p! ≥ (p/e)p. Now
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substitute these bounds into the Taylor expansion.

Eeλ2X2 ≤ 1 +
∞∑
p=1

(2λ2p)p

(p/e)p =
∞∑
p=0

(2eλ2)p = 1
1− 2eλ2 , if |λ| < 1√

2e
.

In the last step we used the convergence of the geometric series. For x ∈ [0, 1/2],
the inequality 1/(1− x) ≤ e2x is valid and then

Eeλ2X2 ≤ e4eλ2 , if |λ| ≤ 1√
2e
,

we thus obtain III for K3 =
√

2e.
The implication III ⇒ IV is straightforward, take λ sufficient small such

that eK2
3λ

2 ≤ 2. IV ⇒ I. By homogeneity assume K4 = 1. Then

P(|X| ≥ t) = P(eX2 ≥ et2)
≤ e−t

2E[eX2 ] (by the Markov Inequality, see the Appendix)
≤ 2e−t2 (by property IV).

We obtain I with K1 = 1.
We now prove III ⇒ V and then V ⇒ I.Assume III holds with K3 = 1.

Since ex ≤ x+ ex
2 for all real x,

EeλX ≤ E[λX + eλ
2X2 ]

= Eeλ2x2 (since we assume EX = 0)
≤ eλ

2 , (If |λ| ≤ 1).

We get the desired bound for |λ| ≤ 1. Now suppose that |λ| > 1. Use
2λx ≤ λ2 + x2 for all λ and x to obtain

EeλX ≤ eλ
2/2 EeX2/2 ≤ eλ

2/2e1/2 ≤ eλ
2
.

The second inequality follows from property III and the last one from the fact
that λ has absolute value greater than one. Thus III ⇒ V with K5 = 1.

For V⇒ I, we use a smart trick, the so called Laplace transform method.
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Let λ > 0 be a parameter to be chosen later. Write

P(X ≥ t) = P(eλX ≥ eλt)
≤ e−λtEeλt (by the Markov inequality)
≤ e−λteλ

2 (by property V)
= e−λt+λ

2

= e−t
2/4 (Minimizing in λ: λ = t

2).

Apply the same method to −X to obtain P(X ≤ −t) ≤ e−t
2/4. Using the union

bound we finally obtain I with K1 = 2. �

The argument in the proof of I ⇒ II will be used repeatedly and will be
referred to as the integral identity.

Definition 2.5 (Sub-gaussian random variables, subgaussian norm) Any ran-
dom variable that satisfies properties I-IV is called sub-gaussian random vari-
ables. The sub-gaussian norm ‖X‖ψ2 is

‖X‖ψ2 = inf{t > 0 : EeX2/t2 ≤ 2} (2-2)

The reader may check that ‖X‖ψ2 is indeed a norm. From property IV, X
is sub-gaussian if and only if ‖X‖ψ2 is finite. The sum of sub-gaussian random
variables is also sub-gaussian.

Remark 2.6 The number 2 in the definitions can be replaced by another
constant. It arises naturally in many scenarios when there is a common bound
for X and −X, as in the proof of property V.

We rewrite Proposition 2.4 in the notation of sub-gaussian norms.

P(|X| ≥ t) ≤ 2e−t
2/‖X‖2

ψ2 , (2-3)

‖X‖p ≤ C‖X‖ψ2

√
p ∀p ≥ 1. (2-4)

If X has zero mean,
EeλX ≤ e

Cλ2‖X‖2
ψ2 ∀λ ∈ R, (2-5)

where C > 0 is an absolute constant. The space of sub-gaussian random
variables is a Banach space because of property 2-4.

Example 2.7 Some classical examples of sub-gaussian random variables:

1. - (Gaussians) If X ∼ N(0, σ2), Proposition 2.2 and homogeneity
implies that ‖X‖ψ2 ≤ Cσ, for an absolute constant C. By the triangular
inequality, X ∼ N(µ, σ2), ‖X‖ψ2 ≤ Cσ + |µ|(1/

√
ln 2).
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2. - (Bounded variables) Any bounded random variable X is sub-
gaussian with ‖X‖ψ2 ≤ C‖X‖∞, for C = 1/

√
ln 2.

We end this section with an application of the Laplace transform method
combined with the new ideas. We begin considering bounded random variables.

Proposition 2.8 (Hoeffding’s Inequality [29]). Let X1, . . . , Xn be independent
random variables. Assume that, for each i ∈ [n], Xi ∈ [mi,Mi]. Then

∀t > 0, P(|
n∑
i=1

Xi − EXi| ≥ t) ≤ 2e−2t2/B, for B =
n∑
i=1

(Mi −mi)2.

Proof. We suppose EXi = 0. After proving the bound in this case, apply the
result for X ′i = Xi − EXi. For λ > 0 to be chosen later, consider the moment
generating function eλ

∑n

i=1 Xi for the sum ∑n
i=1Xi. Then

P(
n∑
i=1

Xi ≥ t) = P(eλ
∑n

i=1 Xi ≥ eλt)

≤ e−λt Eeλ
∑n

i=1 Xi (Markov inequality)

≤ e−λt
n∏
i=1

EeλXi (independence of Xi) .

(2-6)

We prove that
EeλXi ≤ eλ

2(Mi−mi)2/8. (2-7)
Since mi ≤ Xi ≤Mi, Xi = αmi + (1− α)Mi where α = (X −mi)/(Mi −mi).
By the convexity of the map y → eλy, eλX ≤ αeλMi + (1− α)eλmi .

Taking expectations and using EXi = 0,

EeλX ≤ −mi

Mi −mi

eλMi + Mi

Mi −mi

eλmi = eg(u),

where u = λ(Mi−mi), g(u) = −γu+ ln(1−γ+γeu) and γ = −mi/(Mi−mi).
We bound g(u). Note that g(0) = 0, g′(u) = −γ + (1 − γ + γeu)−1γeu,

and g′(0) = 0. For the second derivative,

g′′(u) = γeu(1− γ + γeu)− γ2e2u

(1− γ + γeu)2 = γeu

(1− γ + γeu)
(
1− γeu

1− γ + γeu

)
.

By the arithmetic-geometric mean inequality, the last term is (uniformly)
bounded by 1/4. Summarizing, g(0) = g′(0) = 0 and g′′(u) ≤ 1/4 for u > 0.
By the Taylor expansion, there is θ ∈ (0, u) such that

g(u) = g(0) + ug′(0) + u2

2 g
′′(θ) ≤ u2

8 = λ2(Mi −mi)2

8 .
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Chapter 2. Concentration Inequalities in the Sub-gaussian Context 20

The proof of the bound 2-7 is now complete.
Substitute it in the right hand side of 2-6:

P(
n∑
i=1

Xi ≥ t) ≤ e−λt
n∏
i=1

EeλXi

≤ e−λt
n∏
i=1

Eeλ2(Mi−mi)2/8 (by 2-7)

= e−λteλ
2B/8, for B =

n∑
i=1

(Mi −mi)2.

and now the strictest bound is obtained for λ = 4t/B:

P(
n∑
i=1

Xi ≥ t) ≤ e−2t2/B.

Finally, write P(|X| ≥ t) ≤ P(X ≥ t) + P(X ≤ −t) and observe that the
proof for the other side bound P(∑n

i=1Xi ≤ −t) is the same. We obtain
P(|∑n

i=1Xi| ≥ t) ≤ 2e−2t2/B. �

We need an extension of this result, the so called bounded differences
inequality [39]. We align the proof from [9] with the argument above.

Theorem 2.9 (Bounded differences inequality). Let X1, . . . , Xn be a sequence
of independent random variables. Suppose that a function g : Rn → R obeys
the bounded difference condition, i.e, for i ∈ [n] there is ci > 0 such that

sup
x1,...,xn,x′i

|g(x1, . . . , xi, . . . , xn)− g(x1, . . . , x
′
i, . . . , xn)| ≤ ci . (2-8)

Then the following concentration holds:

∀t > 0, P(|g(X1, . . . , Xn)−Eg(X1, . . . , Xn)| ≥ t) ≤ 2e−2t2/A, for A =
n∑
i=1

c2
i .

Proof. As in the end of the proof of 2.8, it is enough to prove one side
bound. Let Vi = E[g(Xi|X1, .., Xi)] − E[g(Xi|X1, .., Xi−1)]. Then ∑n

i=1 Vi =
g(X1, . . . , Xn)− Eg(X1, . . . , Xn). We apply the Laplace transform method

P(
n∑
i=1

Vi ≥ t) ≤ e−λt Eet
∑n

i=1 Vi (Same steps of the bound 2-6)

≤ e−λt E[et
∑n−1

i=1 Vi E[etVn|X1, . . . , Xn]] (iterated expectation and independence)

≤ e−λt+t
2c2
n/8 E[et

∑n−1
i=1 Vi ] (By 2.8).
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We use iterated expectation combined with a bound 2.8 recursively, i.e, we
apply this combination n− 1 times and obtain

P(
n∑
i=1

Vi ≥ t) ≤ e−λt+t
2A/8, A =

n∑
i=1

c2
i .

We optimize for λ = 4t/A as we did in the 2.8 and finish the proof. �

Remark 2.10 The Azuma-Hoeffding inequality [2] is a (more general) mar-
tingale version of the inequality above. The proof is the same, using the vo-
cabulary of martingales, which we do not use in this text.

The extension of Hoeffding’s inequality to sub-gaussian random variables
requires a lemma.

Lemma 2.11 (Sum of sub-gaussian random variables) Let X1, . . . , XN be
independent, mean zero, sub-gaussian random variables. Then

‖
n∑
i=1

Xi‖2
ψ2 ≤ C

n∑
i=1
‖Xi‖2

ψ2 .

Proof. We consider again the moment generating function. For ∀λ > 0,

Eeλ
∑n

i=1 Xi =
n∏
i=1

EeλXi (independence)

≤
n∏
i=1

EeCλ
2‖Xi‖2

ψ2 (property 2-5)

= eKλ
2 for K = C

n∑
i=1
‖Xi‖2

ψ2 .

The sum ∑n
i=1Xi has zero mean by the linearity of the expected value. By

property 2-5 and the equivalences in Proposition 2.4, ‖∑n
i=1Xi‖2

ψ2 ≤ K. �

Proposition 2.12 (Hoeffding’s Inequality, sub-gaussian version [63]). Let
X1, . . . , Xn be independent, mean zero, sub-gaussian random variables. Then,
for any t ≥ 0,

P(|
n∑
i=1

Xi| ≥ t) ≤ 2e−t2/A′ , for A′ =
n∑
i=1
‖Xi‖2

ψ2 .

Proof. The proof is a consequence of Lemma 2.11 and 2-3. �
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2.2
Concentration of Norms

We consider the concentration of the Euclidean norm of random vectors.
The material of this section is adapted from [63]. The following example
motivates the definition of sub-exponential random variable.

Example 2.13 Let g = (g1, . . . , gn) be a standard normal vector in Rn. We
should expect some concentration for the Euclidean norm ‖g‖2 =

√∑n
i=1 g

2
i .

Notice that gi is Gaussian and consequently sub-gaussian, but g2
i is not:

P(g2
i > t) = P(|gi| ≥

√
t) ∼ e−t/2 .

Hoeffding inequalities are not applicable here: the tails are slightly heavier than
the Gaussian tails. We can still mime the characterizations of sub-gaussian
distributions as in the Proposition 2.4 to obtain concentration bounds in the
sub-exponential case.

The following proposition is a counterpart of Proposition 2.4.

Proposition 2.14 (Sub-exponential Properties). Let X be a random variable.
Then the following properties are equivalent (each holds for some Ki > 0).

I - The tails of X satisfy

∀t > 0, P(|X| ≥ t) ≤ 2e−t/K1 .

II - The moments of X satisfy

∀p ≥ 1, ‖X‖p ≤ K2p.

III - The MGF of |X| satisfies

∀λ ∈ R, 0 ≤ λ ≤ K−1
3 , Eeλ|X| ≤ eK3λ.

IV - The MGF of |X| is bounded at some point,

Ee|X|/K4 ≤ 2.

V -If X is mean zero, the following is also equivalent to all the above

∀λ ∈ R, |λ| ≤ K−1
5 , EeλX ≤ eK

2
5λ

2
.
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Proof. We only prove that II is equivalent to V , the others properties can be
proved using the same arguments in the proof of Proposition 2.4. Suppose that
II holds with K2 = 1 and λ is positive (If it is zero the inequality is trivial).
By the Taylor expansion

EeλX = 1 + λEX +
∞∑
p=2

λp + E[Xp]
p! = 1 +

∞∑
p=2

λp E[Xp]
p! ,

since X has zero mean. Use the estimates E[Xp] ≤ (p)p and p! ≥ (p/e)p.

EeλX ≤ 1 +
∞∑
p=2

(λp)p
(p/e)p

= 1 + (eλ)2

1− eλ (provided that |eλ| < 1)

≤ 1 + 2e2λ2 (if |eλ| ≤ 1/2)
≤ e2e2λ2 (elementary inequality 1 + x ≤ ex).

Now apply the bound above for −X and conclude that it holds for all λ with
absolute value less than 1/2e (the right hand side does not change). We now
assume that V holds with K5 = 1. Consider the numeric inequality that is
valid for every x and p > 1

|x|p ≤ pp(ex + e−x).

To see that the inequality holds, divide both sides by pp and compare the
Taylor series. Applying this inequality

E|X|p ≤ pp(EeX + Ee−X) ≤ 2pp.

The last inequality follows from Property V applied twice with λ = 1 and
λ = −1. Take the p-root and end the proof. �

Definition 2.15 (Sub-exponential random variable, sub-exponential norm). A
random variable X is sub-exponential if it obeys I-IV. By Proposition 2.14, X
is sub-exponential if and only if the following norm is finite

‖X‖ψ1 = inf{t > 0 : Ee|X|/t ≤ 2}. (2-9)

Proposition 2.16 (Sub-exponentials are squares of sub-gaussians). A random
variable X is sub-gaussian if and only if X2 is sub-exponential. Moreover

‖X2‖ψ1 = ‖X‖2
ψ2 .
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Proof. Indeed, ‖X2‖ψ1 is the infimum of t1 > 0 such that EeX2/t1 ≤ 2 and
‖X‖ψ2 is the infimum of t2 > 0 such that EeX2/t22 ≤ 2. We get that t1 = t22. �

We prove an analogous of the sub-gaussian Hoeffding inequality 2.12.

Proposition 2.17 (Bernstein Inequality- First version) Let X1, . . . , Xn be
independent, mean zero, sub-exponential random variables. Then

∀t ≥ 0, P(|
n∑
i=1

Xi| ≥ t) ≤ 2 max{e−ct2/σ2
, e−ct/K}

for an absolute constant c > 0, σ2 = ∑n
i=1 ‖Xi‖2

ψ1 and K = maxi≤n ‖X‖ψ1.

Proof. We use the Laplace transform method. The proof follows closely
Proposition 2.8 and some steps are omitted. For S = ∑n

i=1Xi,

P(S ≥ t) ≤ eλt
n∏
i=1

EeλXi (2-10)

Take λ such that |λ| ≤ c/K , and then, by property V of Proposition 2.14,

EeλXi ≤ eCλ
2K2

.

Substituting the MGF bound into 2-10,

P(S ≥ t) ≤ e−λt+Cλ
2σ2

.

The best bound is attained for λ = min{ t
2Cσ2 ,

c
K
}:

P(S ≥ t) ≤ max{e−ct2/σ2
, e−ct/K} ,

Again, we use the two sides bound to complete the proof. �

For convenience we restate the Bernstein bound in a different form. We
apply it with aiXi instead of Xi where a = (a1, . . . , an) is vector.

Theorem 2.18 (Bernstein inequality - Usual form) Under the assumptions of
Theorem 2.17, for a = (a1, . . . , an) ∈ Rn,

∀t > 0, P(|
n∑
i=1

aiXi| ≥ t) ≤ 2 max{e−ct2/‖a‖2
2σ

2
, e−ct/K‖a‖∞}

Remark 2.19 The case ai = 1/n relates asymptotic and non-asymptotic
results. Theorem 2.18 above is a quantitative law of large numbers.
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Definition 2.20 (Sub-gaussian random vectors). A random vector X in Rn is
sub-gaussian if the one-dimensional marginals 〈X, x〉 are sub-gaussian random
variables for all x ∈ Rn. The sub-gaussian norm of X is defined as the
supremum over all possible directions,

‖X‖ψ2 = sup
x∈Sn−1

‖〈X, x〉‖ψ2 . (2-11)

Theorem 2.21 (Concentration of norm for vectors). Consider a sub-gaussian
random vector X = (X1, . . . , Xn) ∈ Rn of independent, sub-gaussian coordi-
nates satisfying E[X2

i ] = 1. Then

∀t > 0, P(| ‖X‖2 −
√
n | ≥ t) ≤ 2e−ct2/K4

,

where c > 0 is an absolute constant independent of n and K = maxi∈[n] ‖Xi‖ψ2.

Proof. We may suppose K ≥ 1. If not, multiply X by a constant larger than
1. We apply Theorem 2.18 on the expression

1
n
‖X‖2

2 − 1 = 1
n

n∑
i=1

(X2
i − 1) .

Since Xi is sub-gaussian, by Proposition 2.16, X2
i − 1 is sub-exponential with

zero mean. The hypothesis of Theorem 2.18 with ai = 1/n holds: for ∀i ∈ [n],
we consider the sub-exponential norm,

‖X2
i − 1‖ψ1 ≤ C‖X2

i ‖ψ1 (by triangular inequality)
= C‖Xi‖2

ψ2 (by 2.16)
≤ CK2

Then

P(| 1
n
‖X‖2

2− 1| ≥ u) ≤ 2 max{e−cnu/K4
, e−cnu

2/K4} (Recall K4 ≥ K2) . (2-12)

This is a concentration result for the squared norm. Now use

z ≥ 0 , |z − 1| ≥ δ ⇒ |z2 − 1| ≥ max{δ, δ2} (2-13)

so that, for every δ ≥ 0,

P(| 1√
n
‖X‖2 − 1| ≥ δ) ≤ P(| 1

n
‖X‖2

2 − 1| ≥ max{δ, δ2}) (by 2-13)

≤ 2e−cnδ2/K4 (by 2-12 with u = max{δ, δ2})
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We conclude the proof by setting δ = t/
√
n. �

Corollary 2.22 Under the assumptions of the Theorem 2.21 we write

√
n− CK2 ≤ E‖X‖2 ≤ CK2 +

√
n

Proof. Theorem 2.21 is equivalent to ‖ ‖X‖2−
√
n ‖ψ2 ≤ CK2, by Proposition

2.4 and the corollary follows. �

2.3
Bounds for Singular Values via Net Arguments

In this section we use the material developed in the previous sections
to present the ε-net arguments that provides bounds for norms of random
matrices. The material covered in this section is from [63] and [62]. We start
defining some geometric quantities.

Definition 2.23 (ε-net). Let (T, d) be a metric space. Consider a compact
subset K ⊂ T and fix ε > 0. A subset Nε ⊂ K is an ε-net of K if

∀k ∈ K, ∃k0 ∈ Nε : d(k, k0) ≤ ε.

Definition 2.24 (Covering numbers). The covering number N (K, d, ε) is the
smallest possible cardinality of an ε-net Nε of K.

Equivalently,N (K, d, ε) is the smallest number of closed balls with center
in K and radius ε whose union covers K.

Definition 2.25 (Packing numbers). A subset P of a metric space (T, d) is
ε-separated if, for x, y ∈ P, d(x, y) ≥ ε whenever x 6= y. The packing number
P(K, d, ε) is the largest cardinality of a ε-separated set of a given subset K ⊂ T .

Clearly covering numbers and packing numbers are finite. We omit the
reference to d when we refer to the standard Euclidean distance and denote
by |.| the Lebesgue measure in Rn. We now quantify the notions above.
Definition 2.26 (Minkowski Sum). Let A and B subsets of Rn. The
Minkowski sum is A+B = {a+ b : a ∈ A, b ∈ B}.

Proposition 2.27 (Volume bounds for Covering and Packing Numbers). Let
K be a subset of Rn and ε > 0. Then

|K|
|εBn

2 |
≤ N (K, ε) ≤ P(K, ε) ≤ |K + (ε/2)Bn

2 |
|(ε/2)Bn

2 |
.
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Figure 2.1: Left hand side: packing a pentagon K by seven ε-balls shows that
P (K, ε) ≥ 7. Right hand side: covering the same pentagon K by seven ε′-balls
shows that N(K, ε′) ≤ 7.

Proof. We begin with the lower bound. By comparing volumes,

|K| ≤ N (K, ε) |εBn
2 |.

For the middle bound, observe that, if P is a ε-separated set of maximal
cardinality, then P is a ε-net. Indeed, if for every k ∈ K there is no p ∈ P
with d(p, k) ≤ ε then P ′ = P ∪ {k} is a ε-separated set larger than P , a
contradiction. The bound follows from the definition of ε-net.
Finally, for the upper bound, we consider the P(K, ε) disjoint balls centered
in points in K and radius ε/2. The balls may not fit entirely in K, they lie in
the larger set K + (ε/2)Bn

2 . Now compare volumes,

P(K, ε) |(ε/2)Bn
2 | ≤ |K + (ε/2)Bn

2 | .

�
Corollary 2.28 (Covering number for the Euclidean unit ball).

1
εn
≤ N (Bn

2 , ε) ≤ (2
ε

+ 1)n.

The same upper bound holds for the sphere Sn−1.

Informally, nets are a discretization technique. For concreteness, we
estimate the typical value of the norm of a random matrix A ∈ Rm×n,

‖A‖ = ‖A‖2→2 = sup
x∈Bn2 , y∈Bm2

〈Ax, y〉
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Consider ε-nets Nε and Mε of Bn
2 and Bm

2 respectively, with cardinalities
N = N (Bn

2 , ε) and M =M(Bm
2 , ε). A discretization of the quadratic form is

sup
x∈Nε , y∈Mε

〈Ax, y〉 = max
x∈Nε , y∈Mε

n∑
i=1

m∑
j=1

Aijxiyj .

We first evaluate the quality of this approximation.
Proposition 2.29 (Norm and form over nets). Let A ∈ Rm×n and ε ∈ [0, 1).
For an ε-net Nε of the unit ball Bn

2 ,

sup
x∈Nε
‖Ax‖2 ≤ ‖A‖ ≤ ( 1

1− ε) sup
x∈Nε
‖Ax‖2.

Similarly, let ε ∈ [0, 1/2). Then, for ε-nets Nε andMε of Bn
2 and Bm

2 ,

sup
x∈Nε , y∈Mε

〈Ax, y〉 ≤ sup
x∈Bn2 , y∈Bm2

〈Ax, y〉 ≤ ( 1
1− 2ε) sup

x∈Nε , y∈Mε

〈Ax, y〉.

Proof. We prove the slightly harder second statement. The lower bound is
straightforward: every net is a subset of a ball. Now fix x ∈ Sn−1 and y ∈ Sm−1

such that 〈Ax, y〉 = ‖A‖ and choose x0 ∈ Nε with ‖x− x0‖ ≤ ε and y0 ∈ Mε

with ‖y − y0‖ ≤ ε. Then

|〈Ax, y〉 − 〈Ax0, y0〉| = |〈Ax, y − y0〉+ 〈A(x− x0), y〉| ≤ 2ε‖A‖.

Also,

|〈Ax0, y0〉| ≥ |〈Ax, y〉| − |〈Ax0, y0〉| ≥ ‖A‖ − 2ε‖A‖ = (1− 2ε)‖A‖

�

Theorem 2.30 (Largest singular value of matrices with sub-gaussian entries).
Let A be an m × n random matrix whose entries Aij are independent, mean
zero, sub-gaussian random variables. Then

∀t > 0, P(‖A‖ > CK(
√
m+

√
n+ t)) ≤ 2e−t2 .

Here C > 0 is an absolute constant and K = maxi,j ‖Aij‖ψ2.

We use Lemma 2.11, as the vectors of interest belong to unit balls. The
arguments envolving ε-nets can be divided in three steps: approximation,
concentration, union bound.
Proof. (Approximation) Fix ε = 1/4. From Corollary 2.28 there are ε-nets
Nε of the unit ball Bn

2 andMε of the unit ball Bm
2 with cardinalities
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N (B2, ε) ≤ 9n andM(B2, ε) ≤ 9m. (2-14)

By Proposition 2.29,

〈Ax, y〉 ≤ 2 sup
x∈Nε y∈Mε

〈Ax, y〉 . (2-15)

(Concentration) For x ∈ Nε and y ∈Mε, by Lemma 2.11,

‖〈Ax, y〉‖2
ψ2 ≤ C

n∑
i=1

m∑
j=1
‖Aijxiyj‖2

ψ2 ≤ CK2
n∑
i=1

m∑
j=1

x2
i y

2
j ≤ CK2,

since ‖x‖ = ‖y‖ = 1. By the property 2-3, for some c > 0,

∀u ≥ 0, P(〈Ax, y〉 ≥ u) ≤ 2e−cu2/K2
. (2-16)

(Union Bound) For a fixed pair (x, y), we have the tail bound 2-16. We apply
the crude union bound on nets by combining 2-16 and 2-14,

P( sup
x∈Nε y∈Mε

〈Ax, y〉 ≥ u) ≤
n∑
i=1

m∑
j=1

P(〈Axi, yj〉 ≥ u) ≤ 9n+me−cu
2/K2

. (2-17)

Choose u = CK(
√
n+
√
m+ t). Then u2 ≥ C2K2(n+m+ t2). Also choose C

so that cu2/K2 ≥ 3(n+m) + t2. Combine 2-17 with 2-15,

P(‖A‖ ≥ 2u) ≤ P( sup
x∈Nε y∈Mε

〈Ax, y〉 ≥ u) ≤ 9n+m 2e−3(n+m)−t2 ≤ 2e−t2 .

�

Corollary 2.31 Under the same assumptions of Theorem 2.30, suppose that
the entries Aij of A has unit variance. Then,

K ′(
√
m+

√
n) ≤ E‖A‖ ≤ CK(

√
m+

√
n). (2-18)

Here K ′ is a constant that depends on K and C > 0 is an absolute constant.

Proof. The upper bound follows directly from the integral identity (Appendix).
Now, the operator norm of any matrix A is bounded below by the maximum
between the operator norm of any row and the operator norm of any column.
By Corollary 2.22 we obtain

E‖A‖ ≥ K ′(
√
n+
√
m).

�

We now consider concentration of extremal singular values for matrices
whose entries are not independent: we assume independence of the rows.
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Definition 2.32 (Isotropy). A random vector X in Rn is isotropic if

∀x ∈ Rn, E[〈X, x〉2] = ‖x‖2
2.

Lemma 2.33 (Characterization of Isotropic Random vectors). A random
vector X is isotropic if and only if the covariance matrix Σ equals In, the
identity matrix of size n.

Proof. Clearly, two symmetric matrices M and N are equal if and only if
xTMx = xTNx for every vector x. Also

E[〈X, x〉2] = xT (E[XXT ])x = ‖x‖2
2 = xT Inx

�

Remark 2.34 (Scaling to Isotropic Case). Let X be a random vector with
mean vector µ and covariance matrix Σ. For

Z = Σ−1/2(X− µ),

we have E[ZZT ] = In. By Lemma 2.33, Z is an isotropic random vector.

We denote the singular values of A by si(A) in a decreasing order:

s1(A) = max ‖Ax‖2

‖x‖2
, sn(A) = min ‖Ax‖2

‖x‖2
.

Theorem 2.35 (Sub-Gaussian deviation). Let A be an m × n matrix whose
rows are independent, mean zero, isotropic sub-gaussian random vectors in Rn.
Set K = maxi∈[n] ‖Ai‖ψ2. Then, for every t ≥ 0,

√
m− CK2(

√
n+ t) ≤ sn(A) ≤ s1(A) ≤

√
m+ CK2(

√
n+ t)

with probability at least 1− 2e−t2. Here C > 0 is an absolute constant.

We need a standard result from linear algebra.

Lemma 2.36 (Approximate Isometries). Let A be a m× n matrix for which

‖ 1
m
ATA− In‖ ≤ max{δ, δ2}, (2-19)

for some δ > 0. Then

(1− δ) ≤ sn(A) ≤ s1(A) ≤ (1 + δ).
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Proof. Suppose without loss of generality that ‖x‖2 = 1. By hypothesis,

max{δ, δ2} ≥ |〈 1
m
ATA− In)x, x〉‖ = | ‖Ax‖2

2 − 1 |.

Use max{|z − 1|, |z − 1|2} ≤ |z2 − 1| for z = ‖Ax‖2. �

In the proof of Theorem 2.35, we consider nets in the sphere.
Proof. According to Lemma 2.36, it is enough to prove

‖ 1
m
ATA− In‖ ≤ K2 max{δ, δ2}, δ = C(

√
n

m
+ t√

m
) (2-20)

with the required probability. We take the usual three steps.
(Approximation) Using 2.28, there is a 1/4-net N of the sphere Sn−1 with
cardinality bounded by 9n. By Proposition 2.29,

‖ 1
m
ATA− In‖ ≤ 2 max

x∈N
|〈( 1
m

)ATA− In)x, x〉| = 2 max
x∈N
| 1
m
‖Ax‖2

2 − 1|.

In order to prove 2.36, we show that

max
x∈N
| 1
m
‖Ax‖2

2 − 1| ≤ ε

2 , ε = K2 max{δ.δ2},

with the required probability.
(Concentration) For x ∈ Sn−1, ‖Ax‖2

2 = ∑n
i=1〈Ai, x〉2. Moreover, 〈Ai, x〉2

are independent sub-gaussian random variables with E〈Ai, x〉2 = 1 (isotropy
hypothesis) and ‖〈Ai, x〉2‖ψ2 ≤ K. By Proposition 2.16, the random variables
〈Ai, x〉2 − 1 are sub-exponential, mean zero and independent with ‖〈Ai, x〉2 −
1‖ψ1 ≤ CK2. From Theorem 2.18,

P(| 1
m
‖Ax‖2

2 − 1| ≥ ε

2) ≤ 2 max{e−cmε2/K4
, e−cmε/K

2}

= 2e−cδ2m (since ε

K2 = max{δ, δ2})

≤ 2e−cC2(n+t2),

where δ was replaced by its value.
(Union Bound)

P(max
x∈N
| 1
m
‖Ax‖2

2 − 1| ≥ ε

2) ≤ 9n.2e−cC2(n+t2) ≤ 2e−t2 .

The last step holds for a large C > 0. �

Remark 2.37 Isotropy was used to obtain an absolute constant C.

The next result follows by the integral identity.
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Corollary 2.38 Under the same assumptions of Theorem 2.35,

√
m− CK2√n ≤ Esn(A) ≤ Es1(A) ≤

√
m+ CK2√n.

2.4
Chaining

We obtained estimates for singular values of random matrices formed
by sub-gaussian entries and sub-gaussian rows. We consider the analogous
problem for conic singular values of random matrices in which ε-nets arguments
does not work because such arguments relies on the simple geometry of the
Euclidean ball. To circumvent the geometry of the cone, we develop tools
from stochastic process theory, in particular estimates for the supremum of
stochastic process using the method of chaining.

Definition 2.39 (Stochastic Process). A stochastic process is a collection of
random variables (Xt)t∈T defined on a common probability space. A stochastic
process is centered if all random variables have zero mean.

We assume that the index set T is countable, to avoid issues of measurability.

Definition 2.40 (Lattice supremum). For a stochastic process (Xt)t∈T , let F
be the collection of all finite subsets of T . The lattice supremum of Xt is

E sup
t∈T

Xt = sup
F∈F

E sup
t∈F

Xt. (2-21)

Definition 2.41 (Gaussian process). A stochastic process (Xt)t∈T is a Gaus-
sian process if for every finite subset F = {f1, . . . , fn} the random vector
X = (Xf1 , . . . , Xfn) is Gaussian.

Example 2.42 Here are three important examples of stochastic processes.

1. The standard Gaussian process (gt)t∈T formed by independent standard
Gaussian random variables is a Gaussian process.

2. For T ⊂ Rn, the stochastic process Xt = 〈g, t〉 where g ∈ Rn is a
standard Gaussian vector.

3. Let A be a m× n random matrix. For T = Sn−1 × Sm−1,

s1(A) = ‖A‖ = max
(u,v)∈T

〈Au, v〉 = max
(u,v)∈T

X(u,v).
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sn(A) = min
u

max
v
〈Au, v〉 = min

u
max
v
X(u,v).

The example above motivates the use of stochastic processes to estimate
singular values of random matrices.

The definition below connects two notions of distance.

Definition 2.43 (Stochastic process with sub-gaussian increments). Consider
a metric space (T, d). A stochastic process (Xt)t∈T has sub-gaussian increments
if, for some K > 0, for t, s ∈ T , the random variable Xt −Xs is sub-gaussian
with

‖Xt −Xs‖ψ2 ≤ Kd(t, s).

Example 2.44 Let (Xt)t∈T be a Gaussian process and (T, d) a metric space
with the canonical distance d(t, s) = ‖Xt − Xs‖L2 . The metric d has a
probabilistic interpretation: points t and s are near from each other if Xt−Xs

has a small variance.

In a similar fashion, the inequality below, due to Dudley [19], relates
probabilistic and geometric properties. The proof, based on [63] and [22], is a
first example of a chaining argument. The estimate will be refined later for the
Talagrand inequality, Theorem 2.50.

Theorem 2.45 (Dudley integral inequality). Let (Xt)t∈T be a centered
stochastic process indexed by a metric space (T, d), with sub-gaussian incre-
ments as in 2.43. Then, for an absolute constant C > 0,

E sup
t∈T

Xt ≤ CK
∫ ∞

0

√
ln(N (T, d, ε))dε.

We need the following technical lemma.

Lemma 2.46 (Maximum of a finite collection of sub-gaussian variables). Let
X1, .., XN be a sequence of sub-gaussian random variables (not necessarily
independent). Then, for an absolute constant C > 0 and L = maxi∈[N ] ‖Xi‖ψ2,

Emax
i∈[N ]
|Xi| ≤ CL

√
ln(2N). (2-22)
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Proof. We use the Laplace transform method. For λ > 0 to be chosen later,

λEmax
i∈[N ]

Xi = E[ln max
i∈[N ]

(eλXi)]

≤ E[ln
N∑
i=1

(eλXi)] (union bound)

≤ ln(
N∑
i=1

EeλXi) (Jensen inequality)

≤ ln(NeCL2λ2) (by 2-5)
= ln(N) + CL2λ2

We minimize the right hand side by choosing λ = L−1
√

ln(N)C−1 to obtain

Emax
i∈[N ]

Xi ≤ CL
√

lnN.

Apply it to supi∈[N ] |Xi| = supi∈[N ]{X1, . . . , XN ,−X1, . . . ,−XN}. �

We now prove Theorem 2.45.
Proof. In analogy to the ε-net arguments, we divide the proof in three steps:
chaining, controlling the increments and summing the increments.
(Chaining) We assume T finite. By homogeneity, assume K = 1. Consider a
dyadic scale

εk = 2−k, k ∈ Z .

We choose εk-nets Tk of T of cardinality |Tk| = N (T, d, εk). Since T is finite,
there exist km and kM such that Tkm = {t0} for some t0 ∈ T and TkM = T .
For a point t ∈ T , let πk(t) be a nearest point in Tk, and then

d(t, πk(t)) ≤ εk.

By assumption, the stochastic process is centered, therefore

E sup
t∈T

Xt = E sup
t∈T

(Xt −Xt0).

Write Xt −Xt0 as a telescoping sum

Xt −Xt0 =
kM∑

k=km+1
Xπk(t) −Xπk−1(t).

Then
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E sup
t∈T

Xt = E sup
t∈T

kM∑
k=km+1

Xπk(t) −Xπk−1(t)

≤
kM∑

k=km+1
E sup

t∈T
(Xπk(t) −Xπk−1(t)).

(2-23)

(Controlling the increments) For a fixed t,

‖Xπk(t) −Xπk−1(t)‖ψ2 ≤ d(πk(t), πk−1(t)) (by 2.43, as K = 1)
≤ d(πk(t), t)) + d(πk−1(t), t) (triangle inequality)
≤ εk + εk−1 (definition of πk(t)) ≤ 2εk−1.

Apply Lemma 2.46 for a constant C1 and L = 2εk−1, where the supremum is
taken for at most |Tk−1‖Tk| ≤ |Tk|2 pairs (πk−1(t), πk(t)):

E sup
t∈T

Xπk(t) −Xπk−1(t) ≤ 2C1εk−1

√
ln(|Tk|2) = Cεk

√
ln(|Tk|). (2-24)

(Summing the increments) Combine 2-23 and 2-24 (|Tk| = N (T, d, εk)),

E sup
t∈T

Xt ≤
kM∑

k=km+1
E sup

t∈T
Xπk(t) −Xπk−1(t) ≤ C

kM∑
k=km+1

εk−1

√
ln(N (T, d, εk)).

We interpret the right hand size as a Riemann summation.

C
kM∑

k=km+1
εk−1

√
ln(N (T, d, εk)) = C

kM∑
k=km+1

2k−1
√

ln(N (T, d, 2k−1))

≤ C
∑
k∈Z

2
∫ 2−k

2−k−1

√
ln(N (T, d, ε))dε (N (T, d, ε) is decreasing in ε)

= C
∫ ∞

0

√
ln(N (T, d, ε))dε.

Finally, take the lattice supremum 2-21. �

Figure 2.2: Illustration of the chain between t0 and t.
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We now prove Talagrand´s generic chaining bound. Its converse — the
majorizing measure theorem, [56], [54] [55] — holds for Gaussian processes. d
Now, we do not use ε-nets and specific Tk. Instead, we fix a largest cardinality
for a sequence of subsets (Tk)k∈N and choose appropriate scales.

A key concept is the well known Talagrand functional. To simplify
notation, set Nk = 22k , k ≥ 1 and N0 = 1.

Definition 2.47 (Admissible Sequences). For a set T , an admissible sequence
is an increasing sequence of partitions (Ak) of T with cardinality |Ak| ≤ Nk.

By increasing sequence of partitions we mean that every set of Ak+1 is
contained in a set of Ak. Thus, the partition Ak may consist of a large number
of subsets, and provides tight restrictions on the variables of interest.

For A ⊂ T , we denote by ∆(A) the diameter of A. Also, let An(t) ∈ An
be the unique element containing t.

Definition 2.48 (Talagrand Functional γ2). The Talagrand functional of a
metric space (T, d) is

γ2(T, d) = inf
An

sup
t∈T

∑
k≥0

2k/2∆(Ak(t)).

Remark 2.49 An equivalent definition of the Talagrand functional is

γ∗2(T, d) = inf
Tk⊂T

sup
t∈T

∑
k≥0

2k/2d(t, Tk)

for subsets Tk such that ∪kTk = T and |Tk| ≤ Nk. For a proof that
γ∗2(T, d) = Θ(γ2(T, d)), see [57].

The proof below is from [57]. We add some observations from [63].

Theorem 2.50 (Generic Chaining Bound). Let (Xt)t∈T be a centered stochas-
tic process with sub-gaussian increments as in 2.43. Then, for an absolute
constant C > 0,

E sup
t∈T

Xt ≤ CKγ2(T, d).

Proof. (Chaining) As before, assume K = 1 and T finite. Let (Tk)k∈N be a
sequence of subsets of T obeying |Tk| ≤ Nk and whose union is T . Set T0 = {t0}
and choose πk(t) ∈ Tk such that d(t, πk(t)) = d(t, Tk). Suppose that t ∈ TKm ,
so that πKm(t) = t, and consider the chain with Km elements

Xt −Xt0 =
Km∑
k=1

Xπk(t) −Xπk−1(t). (2-25)

DBD
PUC-Rio - Certificação Digital Nº 1812626/CA



Chapter 2. Concentration Inequalities in the Sub-gaussian Context 37

(Controlling the increments) We need to more careful than in Dudley
inequality 2.45. We search for a bound of the type

∀k ∈ N, ∀t ∈ T, |Xπk(t) −Xπk−1(t)| ≤ 2k/2d(t, Tk)

with high probability.Fix k and t. By the sub-gaussian assumption,

‖Xπk(t) −Xπk−1(t)‖ψ2 ≤ d(πk(t), πk−1(t)).

By the sub-gaussian properties 2.4, for u > 0,

|Xπk(t) −Xπk−1(t)| ≤ Cu2k/2d(πk(t), πk−1(t)), (2-26)

with probability at least 1 − 2e−8u22k (to get the constant 8, choose C > 0
large). Use the union bound, so that 2-26 holds for every k and t. There are
|Tk−1‖Tk| ≤ N2

k possible pairs (πk(t), πk−1(t)). The probability that 2-26 holds
for every such pairs is

1−
∞∑
k=1

22k+12e−8u22k ≥ 1− 2e−u2
,

for large u.

(Summing the increments) Since 2-26 holds for all k and t, we plug it into
the chaining summation 2-25,

|Xt −Xt0| ≤ Cu
∞∑
k=1

2k/2d(πk(t), πk−1(t)).

As d(t, πk(t)) = d(t, Tk), the triangle inequality d(πk(t), πk−1(t)) ≤ d(t, Tk−1)+
d(t, Tk) gives

|Xt −Xt0| ≤ 2Cu
∞∑
k=0

2k/2d(t, Tk).

Take the infimum over all sequences (Tk)k∈N and then the supremum over t:

sup
t∈T
|Xt −Xt0 | ≤ inf

(Tk)k∈N
sup
t∈T

2Cu
∞∑
k=0

2k/2d(t, Tk) = 2Cuγ∗2(T, d),

with probability at least 1 − 2e−u2 . Therefore the supremum in the left hand
side is sub-gaussian. By the equivalences 2-3 and 2-4,

E sup
t∈T

Xt = E sup
t∈T

Xt−Xt0 ≤ E sup
t∈T
|Xt−Xt0| ≤ ‖ sup

t∈T
|Xt−Xt0 | ‖ψ2 ≤ C1γ

∗
2(T, d).
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Combine the above inequality with γ∗2(T, d) ≤ γ2(T, d) to complete the proof.
For an admissible sequence Ak, construct Tk by taking exactly one point of
each set A of Ak. Take πk(t) ∈ Tk ∩ Ak(t), so that d(t, πk(t)) ≤ ∆(Ak(t)). By
Definition 2.48, the proof for finite sets T is complete. Now take the lattice
supremum 2-21 to obtain the general result. �

Remark 2.51 The generic chaining bound is actually sharper than Dudley
inequality [57].

A deep result relating supremum of Gaussian processes and the Talagrand
functional γ2(T, d) is
Theorem 2.52 (Majorizing Measure Theorem). Let (Xt)t∈T be a centered
Gaussian process for which the index set T is a metric space (T, d) equipped
with the so called canonical distance d(t, s) = ‖Xt − Xs‖L2. Then, for an
absolute constant C > 0,

C−1γ2(T, d) ≤ E sup
t∈T

Xt ≤ Cγ2(T, d).

The upper bound is a consequence of Theorem 2.50, as the constant K there is
absolute for any Gaussian process indexed by (T, d). The lower bound, however,
relies on specific features of the Gaussian process and does not extend to
stochastic processes with sub-gaussian increments. The proof is very technical
and can be found in [57].
Corollary 2.53 (Talagrand Comparison Principle [63]) Let (Yt)t∈T be a cen-
tered stochastic process with sub-gaussian increments and let (Xt)t∈T be a cen-
tered Gaussian process. Assume for all t, s ∈ T ,

‖Yt − Ys‖ψ2 ≤ K‖Xt −Xs‖L2 .

Then, for an absolute constant C > 0,

E sup
t∈T

Yt ≤ CKE sup
t∈T

Xt.

Proof. Set d = ‖Xt −Xs‖L2 and apply Theorems 2.50 and 2.52 to obtain

E sup
t∈T

Yt ≤ CKγ2(T, d) ≤ CKE sup
t∈T

Xt.

�

Corollary 2.53 motivates the development of tools to estimate the supre-
mum of Gaussian process. Such estimates are studied in the next chapter.

DBD
PUC-Rio - Certificação Digital Nº 1812626/CA



3
Special Properties of Gaussian Processes

In this chapter we present two exclusive properties of Gaussian processes.
The first one is the Gordon Comparison Lemma that provides estimates for
the expectation of the supremum of such processes and the second one is the
Gaussian concentration for Lipschitz functions to obtain concentration for this
supremum. With such tools, we immediately obtain sharper results for singular
values of Matrices formed by Gaussian entries

3.1
The Gordon Comparison Lemma

In this section we prove the following result due to Y.Gordon [25].

Theorem 3.1 (Gordon Comparison Lemma). Consider two centered Gaus-
sian process (Xut)(u,t)∈U×T and (Yut)(u,t)∈U×T . If

∀ u, t, s, E[|Xut −Xus|2] ≤ E[|Yut − Yus|2], (3-1)

∀ t, s, u 6= v, E[|Xut −Xvs|2] ≥ E[|Yut − Yvs|2]. (3-2)
Then

E inf
u∈U

sup
t∈T

Xut ≤ E inf
u∈U

sup
t∈T

Yut.

We begin with analogous results in much less general situations.

Proposition 3.2 (see [37]) Let (Xt)t∈T be a Gaussian process. Then for an
absolute constant C > 0,

E sup
t∈T

Xt ≤ E sup
t∈T
|Xt| ≤ C E sup

t∈T
Xt.

Proof. The first inequality is obvious. For the reverse inequality, fix an arbitrary
point t0 ∈ T and write

E sup
t∈T
|Xt| ≤ E sup

t∈T
|Xt − Xt0|+ E|Xt0 | ≤ E sup

t∈T,s∈T
|Xt − Xs|+ C.

As E supt∈T,s∈T Xt − Xs = E supt∈T,s∈T Xs − Xt,

E sup
t∈T,s∈T

|Xt − Xs| = E sup
t∈T,s∈T

Xt − Xs = E sup
t∈T,

Xt + E sup
s∈T,

-Xs = 2 E sup
t∈T,

Xt.

The last step holds because Xs and −Xs has the same distribution. �
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We omit the extension (with a similar proof) for generalized symmetric
stochastic processes under mild conditions [37]. The next proposition is based
on [37] and is a fundamental tool to bound Gaussian process.

Proposition 3.3 Consider a standard Gaussian stochastic process (gt)t∈T and
T a finite set with cardinality N . Then for some absolute constant C > 0,

C−1
√

lnN ≤ E sup
t∈T

gt ≤ C
√

lnN.

Proof. By Proposition 3.2 it is enough to bound E supt∈T |gt|. We begin with
the upper bound. For δ > 0, to be chosen later,

E sup
t∈T
|gt| =

∫ δ

0
P(sup

t∈T
|gt| ≥ u)du +

∫ ∞
δ

P(sup
t∈T
|gt| ≥ u)du.

The first integral is bounded by δ. Take the union bound,
∫ ∞
δ

P(sup
t∈T
|gt| ≥ u)du ≤ N

∫ ∞
δ

P(|gt| ≥ u)du ≤ N

√
π

2 e
−δ2

2

and, setting δ =
√

2 lnN ,

E sup
t∈T
|gt| ≤

√
2 lnN +

√
π

2 .

For the lower bound, use the independence of the random variables,

E sup
t∈T
|gt| ≥

∫ δ

0
P(sup

t∈T
|gt| ≥ u)du =

∫ δ

0
(1− (1− P(|gt| > u))N)du.

By the monotonicity of the Gaussian tail,

E sup
t∈T
|gt| ≥ δ(1− (1− P(|gt| > δ))N).

and

P(|gt| > δ) =
√

2
π

∫ ∞
δ

e
−u2

2 ≥
√

2
π
e
−(δ+1)2

2 .

Choose δ =
√

lnN and let N such that P(|gt| > u) > 1
N
,

E sup
t∈T
|gt| ≥

√
lnN(1− (1− 1

N
)N) ≥

√
lnN(1− 1

e
).

We proved that there exists N0 such that for every N ≥ N0 the desired
bound holds with absolute constant CN0+1. For N < N0 we choose a constant
CN depending on N such that the desired bound holds. It is easy to see that
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C = min{C2, .., CN0+1} is also an absolute constant. �

Remark 3.4 The bound
√

2 lnN is asymptotically sharp. This is Lemma
2.4.11 in [23]. The proof is essentially the same.

The proposition above does not hold for infinite sets T . The Slepian
lemma obtains similar bounds for nonindependent Gaussian processes indexed
by infinite countable sets T . The main argument in this section is Slepian’s
"comparison of stochastic processes" [49].

Theorem 3.5 (Slepian Lemma) Let (Xt)t∈T and (Yt)t∈T be two centered
Gaussian process. Suppose, for all t, s ∈ T ,

E[X2
t ] = E[Y 2

t ], (3-3)

E[(Xt −Xs)2] ≥ E[(Yt − Ys)2]. (3-4)
Then for all τ ∈ R,

P(sup
t∈T

Xt ≥ τ) ≥ P(sup
t∈T

Yt ≥ τ).

Combining Slepian lemma and the integral identity we obtain the

Corollary 3.6 Under the assumptions of Theorem 3.5,

E sup
t∈T

Xt ≥ E sup
t∈T

Yt.

V.N.Sudakov and X.Fernique ( [52], [53] and [21]) obtained this corollary
without hypothesis 3-3. in In this case, Lemma 3.5 does not hold necessarily.

Theorem 3.7 (Slepian-Sudakov-Fernique Lemma). Let (Xt)t∈T and (Yt)t∈T
be two centered Gaussian stochastic process. Suppose, for all t, s ∈ T ,

E[(Xt −Xs)2] ≥ E[(Yt − Ys)2]. (3-5)

Then E supt∈T Xt ≥ E supt∈T Yt.

We skip the proof of this result and consider instead a generalization,
which also attains lower bounds that are necessary to estimate minimum
singular values.

DBD
PUC-Rio - Certificação Digital Nº 1812626/CA



Chapter 3. Special Properties of Gaussian Processes 42

If U is a singleton, the theorem 3.1 reduces to Lemma 3.7. The proof
below is from [22]. We split it in blocks: it is complete at the end of this
subsection.

Consider finitely indexed families, i.e, Xi,j and Yi,j with i ∈ [n] and j ∈
[m]. We use a Gaussian interpolation technique. Set U(t) =

√
tX +

√
1− tY ,

so that U(0) = X and U(1) = Y . We then show that the function φ(t) =
EF (U(t)) for F (x) = mini∈[n] maxj∈[m] xij is increasing. This is accomplished
by studying the sign of φ′(t). The factor

√
t is used to simplify calculations.

The next result is the classical Gaussian integration by parts, also referred
as Stein’s lemma.

Definition 3.8 A function F : Rm → R has moderate growth if

∀β > 0, lim
‖x‖2→∞

F (x)e−β‖x‖2
2 = 0.

Lemma 3.9 (Stein’s lemma). Let F : Rm → R be a differentiable function
whose partial derivatives satisfy the moderate growth condition. Then
(1): For a mean zero Gaussian variable g and m = 1,

E[gF (g)] = E[g2]EF ′(g) (3-6)

(2): For a Gaussian vector g = (g1, . . . , gm) and a Gaussian random variable
g∗ such that (g, g∗) is a Gaussian random vector,

E[F (g)g∗] =
m∑
j=1

Egjg∗E
∂F

∂xj∂xi
(g). (3-7)

Proof. To prove (1), set σ2 = E[g2] and integrate by parts,

E[gF (g)] = 1√
2πσ2

∫ ∞
−∞

te
−t2
2σ2 F (t)dt = σ2

√
2πσ2

∫ ∞
−∞

e
−t2
2σ2 F ′(t)dt = E[g2]EF ′(g).

From the moderate growth assumption, e−t2F (t) vanishes at infinity. We prove
(2). Since g∗ and g are not necessarily independent, set g′j = gj − g∗ Egjg

∗

Eg∗2 to
obtain E[g′jg∗] = 0, which implies that g′ and g∗ are independent (uncorrelated
Gaussian variables are independent). Now, condition on g′ and apply (1) to
the function t→ F (g′1 + tE[g1g

∗]/E((g∗)2), . . . , g′m + tE[gmg∗]/E[(g∗)2]:

E[g∗F (g)] = E[g∗F (g′1 + t
E[g1g

∗]
E[(g∗)2] , . . . , g

′
m + t

E[gmg∗]
E[(g∗)2)] ]

= E[(g∗)2]
m∑
j=1

E[gjg∗]
E[(g∗)2]E

∂F

∂xj
(g′1 + t

E[g1g
∗]

E[(g∗)2] , . . . , g
′
m + t

E[gmg∗]
E([(g∗)2] )

=
m∑
j=1

E[g∗gj]E
∂F

∂xj
(g).
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�

We need the following standard result in measure theory.

Lemma 3.10 Let J ⊂ R be an open interval and ψ : J × Ω → R. Let X be
a random variable in Ω such that t → ψ(t,X) is almost surely continuously
differentiable in J . Assume that for each compact subinterval I ⊂ J ,

E sup
t∈I
|ψ′(t,X)| <∞. (3-8)

Then the function t→ φ(t) = Eψ(t,X) is continuously differentiable and

φ′(t) = Eψ′(t,X). (3-9)

Proof. Take t ∈ J and choose a compact subinterval I ⊂ J containing t in its
interior. For small, nonzero h ∈ R such that t+ h ∈ I, set

φh(t) = φ(t+ h)− φ(t)
h

and ψh(t,X) = ψh(t+ h,X)− ψh(t,X)
h

.

In order to take a derivative in φ, we check the hypothesis of the Lebesgue
dominated convergence theorem. For positive (resp. negative) h, the mean
value theorem gives t0 ∈ [t, t + h] (resp. t0 ∈ [t + h, t]) such that ψ′(t0, X) =
ψh(t,X). Therefore |ψh(t,X)| ≤ supt∈I |ψ′(t,X)| and by 3-8, the quotient
ψh(t,X) has an integral majorant. From dominated convergence,

φ′(t) = lim
h→0

φh(t) = lim
h→0

Eψh(t,X) = Eψ′(t,X).

�

We now compute the derivative of the interpolation function φ.

Lemma 3.11 Let F : Rm → R be a differentiable function with partial
derivatives of moderate growth. Consider two independent mean zero Gaussian
vectors X = (X1, . . . , Xm) and Y = (Y1, .., Ym). Define, for every t ∈ [0.1],
U(t) = (U1(t), . . . , Um(t)) where Ui(t) =

√
tXi +

√
1− tYi i ∈ [m]. Then the

function φ(t) = EF (U(t)) is differentiable and

φ′(t) =
m∑
i=1

E[U ′i(t)
∂F

∂xi
(U(t))]. (3-10)

Moreover, if F is twice differentiable with all partial derivatives of second
order being of moderate growth,

φ′(t) = 1
2

m∑
i,j=1

(E[XiXj]− E[YiYj])
∂F

∂xi∂xj
(U(t)). (3-11)
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Proof. First note that

d

dt
F (U(t)) =

m∑
i=1

U ′i(t)
∂F

∂xi
(U(t)),

with
U ′i(t) = 1

2
√
t
Xi −

1
2
√

1− t
Yi.

Let I = [a, b] ⊂ (0, 1). We verify condition 3-8.

E sup
t∈I

[|U ′i(t)
∂F

∂xi
(U(t))|] ≤ E sup

t∈I
|U ′i(t)| sup

t∈I
|∂F
∂xi

(U(t))|

≤
√
E sup

t∈I
|U ′i(t)|2]

√
E[|∂F

∂xi
(U(t))|2]

The last inequality follows from Cauchy-Schwarz. We first bound the
first term of the right hand side. By the triangle inequality and the fact every
Gaussian variable has finite variance,

√
E[sup

t∈I
|U ′i(t)|2] ≤

√
E
[X2

i

4a
]

+

√√√√E
[ Y 2

i

4(1− b)
]
<∞

The second term is harder. By the growth condition assumption, there
is β > 0 and A > 0 such that

∀x ∈ Rm, |∂F
∂xi

(x)| ≤ Aeβ‖x‖2 .

We bound ‖U(t)‖2. Since 0 ≤ t ≤ 1,

‖U(t)‖2 ≤ ‖X‖2 + ‖Y‖2 ≤ 2 max{‖X‖2, ‖Y‖2}.

and then
sup
t∈I
|∂F
∂xi

(U(t))| ≤ Amax{e4β‖X‖2
2 , e4β‖Y‖2

2}.

For the mean zero Gaussian vectors X and Y, there are matrices Γ and
Γ′ such that X = Γg and Y = Γ′g′ for independent standard Gaussian vectors
g and g′. Then

E[|∂F
∂xi

(U(t))|2] ≤ A2E[e8β‖Γ‖2→2‖g‖2+8β‖Γ′‖2→2‖g′‖2 ]

= A2(
m∏
i=1

E[e8β‖Γ‖2→2g2
i ]

m∏
j=1

E[e8β‖Γ′‖2→2g′2j ]).
(3-12)

By Proposition 2.16, as gi is a sub-gaussian random variable, g2
i is sub-
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exponential. From Proposition 2.14, there is β > 0 such that the moment
generating function converges. Thus the last term of 3-12 is finite for every
i ∈ [m] and 3-12 is finite as well.
In order to prove 3-11. note that E[U ′i(t)Ui(t)] = 1

2(E[XiXj] − E[YiYj]). Now
apply Gaussian integration by parts, formula 3-7,

E[U ′i(t)
∂F

∂xi
(U(t))] = 1

2

m∑
j=1

(E[XiXj]− E[YiYj])
∂F

∂xi∂xj
(U(t)).

�

The choice of
√
t in the interpolation formula should now be clear: it

provides a cancellation such that t does not appear in the right hand side of
the expression E[U ′i(t)Ui(t)] = 1

2(E[XiXj]− E[YiYj]).
We now have an expression for the derivative of φ, 3-11. We are interested

however in a similar formula for a function F which is not twice differentiable,
and we work with distributional derivatives (see the Appendix).

To simplify notation, set r = xij, s = xkl. The function F (x) is given by

F (x) =

A(r, s) = max{α(r), β(s)} for i = k

B(r, s) = min{α(r), β(s)} for i 6= k.
(3-13)

The functions α and β in turn are truncated identities,

f(t) =


a, if t < a

t, if t ∈ [a, b]

b, if t > b

(3-14)

We may take a = −∞ or b =∞.
For i = k, F = A(r, s) and

A(r, s) = 1
2(α(r) + β(s) + |α(r)− β(s)|).

The distributional partial derivative with respect to r is

∂A

∂r
(r, s) = 1

2(α′(r) + β′(r) + α′(r)sgn(r − β(s)))

=

0, if r ∈ [a, b]
1
2 + 1

2sgn(r − β(s)), if r ∈ [a, b]

The function s → sign(r − β(s)) is non-increasing, so ∂2A(r, s)/∂r∂s is
nonpositive in the distributional sense.
Similarly, ∂2B(r, s)/∂r∂s is nonnegative in the distributional sense. Therefore
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∂2F

∂xij∂xkl
(x) ≤ 0 if i = k (3-15)

and ∂2F

∂xij∂xkl
(x) ≥ 0 if i 6= k. (3-16)

Combining 3-15 with assumption 3-1 and 3-16 with the assumption 3-2,

∀i, j, k, l, (E[|Xi,j −Xk,l|2]− E[|Yi,j − Yk,l|2]) ∂2F

∂xij∂xkl
(x) ≤ 0. (3-17)

We still did not get a formula like 3-11. Expand squares in formula 3-
17 is not enough. But notice that the function F (x) = mini∈[n] maxj∈[m] xij
satisfies F (x + ce) = F (x) + c for e = (1, 1, . . . , 1). Indeed, if we sum ce to
x the maximum and minimum are translated by the same c. The next lemma
applied to F finishes the proof for finite sets U and T .

Lemma 3.12 Let F : Rm → R be a Lipschitz function. Let X = (X1, . . . , Xm)
and Y = (Y1, . . . , Ym) be two mean zero Gaussian vectors. Assume that 3-
17 holds in the sense of distributions and that F (x + ce) = F (x) + c for
e = (1, 1, . . . , 1). Then

EF (X) ≥ EF (Y).

Proof. Without loss of generality we can assume If X and Y are not indepen-
dent, take Y′ an independent copy of Y with the same expected value. We
assume then that X and Y are independent.

Suppose first that F is twice differentiable. Since F (x + ce) = F (x) + c,

∀i ∈ [m],x ∈ Rm,
m∑
j=1

∂2F

∂xi∂xj
(x) = 0,

and ∑
j 6=i

∂2F

∂xi∂xj
(x) = ∂2F

∂x2
i

(x). (3-18)

We now relate equations 3-17 and 3-11 and control the sign of φ′,

φ′ =
m∑

i,j=1
(E[XiXj]− E[YiYj])

∂2F

∂xi∂xj

= −
m∑
i=1

(E[X2
i ]− E[Y 2

i ])
∑
j 6=i

∂2F

∂xi∂xj
+
∑
i 6=j

(E[XiXj]− E[YiYj])
∂2F

∂xi∂xj

= −1
2
∑
i 6=j

(E[X2
i ]− E[Y 2

i ] + E[X2
j ]− E[Y 2

j ]− 2(E[XiXj]− E[YiYj]))
∂2F

∂xi∂xj

= −1
2

m∑
i,j=1

1
2

m∑
i,j=1

(E[(Xi −Xj)] − E[(YiYj)2]) ∂F

∂xi∂xj
≥ 0

To prove the result in generality, we use compactly supported mollifiers ρε (see
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Appendix). For a smoothed version Fε of F ,

|Fε(x)− F (x)| = |
∫
Rm

(F (y)− F (x))ρε(x− y)|

≤
∫
B(x,ε)

|F (y)− F (x)|ρε(x− y)

= O(ε) (F is Lipschitz).

In particular, Fε converges uniformly to F when ε→ 0. Now we have to check
that Fε satisfies the same conditions of F . For a distribution f ,

(Fε,
∂2f

∂xi∂xj
) =

∫
Rm

∫
Rm

F (y)ρε(y− x)dy ∂2f

∂xi∂xj
dx

=
∫
Rm

F (y)∂
2(f ∗ ρε)
∂xi∂xj

(y)dy.

The last equality follows from Fubini theorem. We now check the addi-
tivity property of Fε with respect to e,

Fε(x−y+ce) =
∫
Rn
F (x−y+ce)ρε(y)dy = Fε(x)+ce

∫
Rm

ρε(y)dy = Fε+ce

The last equality follows from the fact that ρε ≥ 0 and ‖ρε‖L1 = 1. Apply
Lemma 3.12 to Fε and use the uniform convergence to obtain

EF (x) = lim
ε→0

EFε(x) ≥ lim
ε→0

EFε(y) = EF (y).

�

Finally, Theorem 3.1 follows by taking the lattice supremum 2-21.

3.2
Some Applications of the Gordon Comparison Lemma

Sudakov’s theorem below [51] plays a key role in the proof of Talagrand
majorizing measure theorem, Theorem 2.52. The proof is from [63], [37]. It is
a generalization of the lower bound obtained in Proposition 3.3.

Theorem 3.13 (Sudakov Minoration Inequality). Let (Xt)t∈T be a centered
Gaussian process. Then there is an absolute constant C > 0 such that

∀ε > 0, E sup
t∈T

Xt ≥ Cε
√

ln(N (T, d, ε)).

Proof. For a ε-net N of T and a standard Gaussian process (gt)t∈T , set

Yt = ε√
2
gt, t ∈ N .
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For two different points t, s ∈ N ,

E(Xt −Xs)2 = d(t, s)2 ≥ ε2,

E(Yt − Ys)2 = ε2

2 E(gt − gs)2 = ε2.

The last equality follows from the fact that gt − gs has distribution N(0,2).
From Theorem 3.7 and Proposition 3.3,

E sup
t∈T

Xt ≥ E sup
t∈N

Xt ≥ E sup
t∈N

Yt ≥ Cε
√

ln(N (T, d, ε).

�

The next result is from [22]. Set En =
√

2Γ((n+1)/2)
Γ(n/2) .

Proposition 3.14 (Euclidean norm of the standard Gaussian vector). Let
g ∈ Rn be a standard Gaussian vector. Then

n√
n+ 1

≤ E‖g‖2 = En ≤
√
n.

Proof. Since the entries of g are independent, ‖g‖2
2 follows a chi-square

distribution with n degrees of freedom (see the Appendix). The expectation is

E‖g‖2 = 1
2n/2Γ(n/2)

∫ ∞
0

x1/2xn/2−1e−x/2dx

= 2n/2
√

2
2n/2Γ(n/2)

∫ ∞
0

t(n−1)/2e−tdt (use t = u/2) = En.

By the functional equation of the gamma function,

En+1En = 2Γ(n/2 + 1)
Γ(n/2) = n

so that E2
n ≤ n and the upper bound for E‖g‖2 follows. For the lower bound,

note that En = n/En+1 ≥ n/
√
n+ 1. �

The next theorem is an application of the theory of stochastic process to
the study of random singular values. The proof is based on [63] and [22].
Theorem 3.15 (Gordon Theorem for Gaussian Matrices [26]). Let A be m×n
whose rows are independent standard Gaussian vectors. Then

Em − En ≤ Esn(A) ≤ Es1(A) ≤ Em + En.

DBD
PUC-Rio - Certificação Digital Nº 1812626/CA



Chapter 3. Special Properties of Gaussian Processes 49

Proof. For (u, v) ∈ Sn−1 × Sm−1, compare the stochastic processes

Xuv = 〈Au, v〉 and Yuv = 〈g, u〉+ 〈h, v〉, g ∼ N(0, In) ,h ∼ N(0, Im).

To use Theorem 3.1, we verify 3-5, 3-1 and 3-2. We begin with Xuv.

E[(Xuv −Xu∗,v∗)2] = E[|(
n∑
i=1

m∑
j=1

Aij(ujvi − u∗jv∗i )|2]

=
n∑
i=1

m∑
j=1

u2
i v

2
j + (u∗i )2(v∗j )2 − 2uju∗jviv∗i

= ‖u‖2
2‖v‖2

2 + ‖u∗‖2
2‖v∗‖2

2 − 2〈u, u∗〉〈v, v∗〉
= 2− 2〈u, u∗〉〈v, v∗〉.

Similarly, for Yuv,

E[(Yuv − Yu∗v∗)2] = E[(〈g, u− u∗〉)2] + E[(〈h, v − v∗〉)2]
= ‖u− u∗‖2

2 + ‖v − v∗‖2
2

= 4− 2〈u, u∗〉 − 2〈v, v∗〉.

Combining the previous expressions,

E[(Yuv − Yu∗v∗)2]− E[(Xuv −Xu∗,v∗)2] = 2(1− 〈u, u∗〉)(1− 〈v, v∗〉) ≥ 0.

The three conditions are thus satisfied. For ε-nets Nε and Mε of Sn−1 and
Sm−1 respectively,

E sup
Sn−1×Sm−1

〈Au, v〉 ≤ 1
1− 2εE sup

Nε×Mε

〈Au, v〉 (Proposition 2.29)

≤ 1
1− 2εE sup

Nε×Mε

〈g, u〉+ E〈h, v〉 (Theorem 3.7)

≤ 1
1− 2εE sup

Sn−1×Sm−1
〈g, u〉+ 〈h, v〉

= 1
1− 2ε(

√
2Γ((n+ 1)/2)

Γ(n/2) +
√

2Γ((m+ 1)/2)
Γ(m/2) ) (Proposition 3.14).

Take the limit ε → 0+ to obtain the upper bound on Es1(A). We apply the
same idea for sn(A) with a few modifications. Let u0 be the vector that achieves
the minimum of ‖Au‖ over the sphere and unet

0 the vector that achieves the
minimum of ‖Au‖ over the net. Moreover, consider u1 the vector in the net Nε
such that ‖u0 − u1‖ ≤ ε, then

sn(A) = ‖Au0‖ ≤ ‖Aunet
0 ‖ ≤ ‖Au1‖ ≤ ‖Au0‖+ ‖A(u1 − u0)‖ ≤ sn(A) + ε‖A‖.
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As a consequence,

inf
Sn−1

sup
Sm−1
〈Au, v〉 ≥ inf

Nε
sup
Sm−1
〈Au, v〉 − ε‖A‖ ≥ inf

Nε
sup
Mε

〈Au, v〉 − ε‖A‖

We bound the right hand side with Theorem 3.1:

E inf
Nε

sup
Mε

〈Au, v〉 − ε‖A‖ ≥ E inf
Nε

sup
Mε

〈g, u〉+ 〈h, v〉 − ε‖A‖ (by 3.1)

= E sup
Nε
〈g,−u〉+ E sup

Mε

〈h, v〉 − ε‖A‖

≥ −
√

2Γ((n+ 1)/2)
Γ(n/2) +

√
2Γ((m+ 1)/2)

Γ(m/2) (1− ε)− ε‖A‖ (by 2.29).

Again, let ε→ 0+ to finish the proof. �

Remark 3.16 By Proposition 3.14, Es1(A) ≤
√
m +

√
n. Also, Esn(A) ≥

√
m −

√
n, from a long calculation related with the Gamma function (see

Lemma C.4 in [22]).

3.3
The Gaussian Concentration Phenomenon for Lipschitz functions

We present a theorem proved independently by Sudakov and Borell
in [50] and [8]. Our version follows [63]. For different versions, see [9], [22].
The importance of this theorem is to obtain tail bounds for singular values.

Theorem 3.17 (Gaussian Concentration for Lipschitz functions). Let g be a
standard Gaussian vector. Let f : Rn → R be a Lipschitz map with respect
to the standard Euclidean norm and denote the Lipschitz constant by ‖f‖Lip.
Then, for an absolute constant C > 0,

P(|f(g)− Ef(g)| ≥ t) ≤ Ce−t
2/2‖f‖Lip .

Concentration of measure is an important concept in Analysis admitting a
strong geometric interpretation. The proof below is based on isoperimetric
inequalities. The first connection between the subject and concentration is
due to P.Levy in his celebrated work on the isoperimetric problem for the
sphere [38]. A similar connection has been established in many different
scenarios (see [63], Chapter 5). We will be especially interested in concentration
in Euclidean spaces with an appropriate Gaussian measure defined below.
Gromov extended these ideas to Riemannian manifolds with positive Ricci
curvature [27], but this is outside the scope of this text. For a broad view of
the concentration phenomenon, see [35].
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We denote by dg(., .) by the geodesic distance on the sphere Sn−1, for
which spherical caps are balls. An ε- neighborhood of a set A ⊂ Sn−1 is

Aε = {x ∈ Sn−1 : ∃y ∈ A such that dg(x, y) ≤ ε}.

Equip the sphere Sn−1 with the normalized Lebesgue measure σn−1,
and let H be a hemisphere, so that σn−1(Sn−1) = 1 and σn−1(H) = 1/2.
Levy [38] proved that, for a ε-neighborhood Hε of H, σn−1(Hε) ≥ 1 − 2e−cε2 :
Hε essentially covers the whole sphere! Levy also proved the celebrated
isoperimetric inequality for the sphere.

Theorem 3.18 (Isoperimetric inequality for the sphere). Let C be a spherical
cap and A ⊂ Sn−1 such that σn−1(A) = σn−1(C). Then, for every ε > 0,

σn−1(Aε) ≥ σn−1(Cε).

A proof is given in [20] and [23]. In contrast to the classic isoperimetric
inequality for Euclidean space with Lebesgue measure, for which a short proofs
are frequent (see, for example, [64]), the case of the sphere is hard.

The Gaussian context is analogous: instead of Sn−1, we consider Rn

equipped with the canonical Gaussian measure.

Definition 3.19 (Canonical Gaussian measure). Let g be a standard Gaus-
sian vector and A ⊂ Rn. The canonical Gaussian measure is

µn(A) = P(g ∈ A) = 1
(2π)n/2

∫
A
e−‖x‖

2
2/2 dx .

For u ∈ Rn and a > 0, consider the half-space H = {x ∈ Rn : 〈x, u〉 ≤ a}. We
prove an isoperimetric inequality for Rn with the Gaussian measure.

We now transfer the isoperimetric inequality obtained for the sphere to
Rn equipped with Gaussian measure. The result was obtained independently
by [50] and [8]. The proof below is from [36].

Theorem 3.20 (Isoperimetric inequality in the Gaussian case). Let A be a
measurable set in Rn and let H be a half-space such that µn(A) = µn(H).
Then, for every ε > 0,

µn(Aε) ≥ µn(Hε).

We proceed to the proof of Theorem 3.20. The following lemma is a standard
argument in probability theory, incorrectly attributed to Poincaré (for histor-
ical notes see [37]). We follow [36]. Consider the sphere S =

√
NSN ⊂ RN+1.
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Lemma 3.21 (Poincaré Observation). Let σ
√
N

N be the normalized Lebesgue
measure of the sphere S and let PN+1,n be the orthogonal projection from RN+1

onto Rn. Then, for every set A ⊂ Rn,

lim
N→∞

σ
√
N

N (P−1
N+1,n(A) ∩ S) = µn(A).

We use the inclusion Rn ⊂ RN+1 given by (x1, . . . , xn) 7→ (x1, . . . , xn, 0, . . . , 0).

Proof. Let (gi)i≥1 be a sequence of independent standard Gaussian variables.
Set R2

k = g2
1 + . . .+g2

k. Note that (
√
k/Rk+1)(g1, .., gk+1) is equal in distribution

to σ
√
k

k . Thus (
√
k/Rk+1)(g1, .., gn) is equal in distribution to Pk+1,n(σ

√
k

k )
for k ≥ n. Notice that R2

n, R
2
N+1 − R2

n, (g1, . . . , gn)/Rn are independent.
Thus R2

n/R
2
N+1 is independent of (g1, . . . , gn)/Rn and has β distribution with

parameters a = n/2 and b = (N + 1− n)/2 (see the Appendix). Then

σ
√
N

N (P−1
N+1,n(A) ∩ S) = P(

√
N

RN+1
(g1, . . . , gn) ∈ A)

= P((N R2
n

R2
N+1

)1/2 1
Rn

(g1, . . . , gn) ∈ A).

Use the probability density function of beta distribution in polar coordinates
to rewrite the right hand side as

β(n2 ,
N + 1− n

2 )−1
∫
Sn−1

∫ 1

0
IA(x
√
Nt)tn/2−1(1− t)(N+1−n)/2dσn−1(x)dt .

Change of variables, r =
√
Nt, so that

β(n2 ,
N + 1− n

2 )−1 2
Nn/2

∫
Sn−1

∫ √N
0

IA(xr)rn−1(1− u2

N
)(N+1−n)/2dσn−1(x)dr .

By the Lebesgue dominated convergence theorem, the limit for N →∞ is

2
2n/2Γ(n/2)

∫
Sn−1

∫ ∞
0
IA(rx)rn−1e−r

2/2dσn−1(x)dr ,

which is the Gaussian measure of A in polar coordinates. �

We now prove Theorem 3.20. Let Φ(t) be the cumulative density function
of a Gaussian variable,

Φ(t) = 1√
2π

∫ t

−∞
e−x

2/2dx .

For the half-space H = {x ∈ Rn : 〈x, u〉 ≤ a}, µn(H) = Φ(a) since the
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Gaussian measure is a product of one dimensional Gaussian measures µ1 and
is invariant under rotations.
Proof. Theorem 3.20 is equivalent to µ(Aε) ≥ Φ(a + ε). Assume that a =
Φ−1(µn(A)) > −∞ and fix b ∈ (−∞, a). By hypothesis, µn(A) = Φ(a) >

Φ(b) = µ1((−∞, b]). By Lemma 3.21, for large N ,

σ
√
N

N (P−1
N+1,n(Aε) ∩ S) > σ

√
N

N (P−1
N+1,1((−∞, b]) ∩ S).

The set P−1
N+1,1((−∞, b]) ∩ S is a spherical cap. Moreover, by the inclusion

(P−1
N+1,n(A) ∩ S)ε ⊂ P−1

N+1,n(Aε) ∩ S,

σ
√
N

N (P−1
N+1,n(Aε) ∩ S) ≥ σ

√
N

N ((P−1
N+1,n(A) ∩ S)ε)

≥ σ
√
N

N ((P−1
N+1,1((−∞, b]) ∩ S)ε) (Theorem 3.18).

Set ε(N) = −b+
√
N cos[arccos( b√

N
)− ε√

N
] to obtain

(P−1
N+1,1((−∞, b]) ∩ S)ε =(P−1

N+1,1((−∞, ε(N) + b]) ∩ S).

When N → ∞, ε(N) → ε. By Lemma 3.21, µn(Aε) ≥ Φ(b + ε). Since b < a,
we may take the limit b→ a−. �

We now prove Theorem 3.17. The argument is based in [36] and [64].
Proof. By homogeneity assume ‖f‖Lip = 1. Let M ∈ R such that

µn(f(x) ≥M) ≥ 1
2 and µn(f(x) ≤M) ≥ 1

2 .

For u ∈ Rn, consider the half-space H = {x ∈ Rn : 〈x, u〉 ≤ 0}. Then

µn(f(x) ≥M) ≥ 1
2 = Φ(0) = µn(H).

Let A = {x ∈ Rn : f(x) ≤M}. By Theorem 3.20,

µn(Aε) ≥ µn(Hε) = Φ(ε) ≥ 1− 1
2e
−ε2/2.

The last step follows from Proposition 2.2. We claim that

µn(Aε) ≤ µn(f(x) ≤M + ε).

Indeed, for x ∈ Aε, there exists y ∈ A such that ‖x − y‖2 ≤ ε. Since f is
Lipschitz, f(x) ≤ f(y) + ‖x− y‖2 ≤M + ε. Repeat the steps for −f to obtain

P(|f(g)−M | ≥ ε) ≤ e−ε
2/2. (3-19)
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To finish the proof, replace the median by the expected value. It is enough to
prove that |M − Ef(g)| ≤ C for an absolute constant C > 0. Then

|Ef(g)−M | = |E[f(g)−M ]| ≤ E|f(g)−M |

=
∫ ∞

0
P(|f(g)−M | ≥ t)dt (integral identity)

≤
∫ ∞

0
e−t

2/2dt =
√
π

2 (by 3-19).

�

As an application of Theorem 3.17 we obtain a tail bound version of
Theorem 3.15. The proof follows [63]. The Frobenius norm of a m× n matrix
A with real valued entries is ||A||F =

√
Tr(AtA).

Corollary 3.22 (Tail bounds for operator norm of Gaussian matrices). Under
the assumptions of Theorem 3.15, for absolute constants C,C1 > 0,

∀t > 0, P(| ‖A‖ − C1(
√
m+

√
n) | ≥ t) ≤ Ce−t

2/2.

Proof. Write the entries of the m× n Gaussian matrix A as a Gaussian vector
A
′ with distribution N(0, Inm). We apply Theorem 3.17. The map f given by

f(A′) = ‖A‖2 satisfies f(A′) = ‖A‖2 ≤ ‖A‖F . We prove that f is 1-Lipschitz

| f(A′)− f(B′) | ≤ ‖A−B‖ = f(A−B) ≤ ‖A−B‖F = ‖A′ −B′‖2.

By Corollary 2.38 and Theorem 3.15, E‖A‖ = Θ(
√
m +

√
n). Now, apply

Theorem 3.17. �

Remark 3.23 The argument above can be applied to prove Theorem 1.2.
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4
Convex Recovery and the Small Ball Method

In this chapter, motivated by problems in signal recovery by convex
optimization, we find accurate lower bounds for the conic singular value with
the tools from stochastic process developed in the previous chapters. Let´s
describe the scenario: the vector x# ∈ Rn is an unknown signal to be recovered
by observing y ∈ Rm,

y = Φx# + e, (4-1)
for a known sampling matrix Φ ∈ Rm×n and an error vector e ∈ Rm. Denote
the extended real line R∪{±∞} by R. The presentation here is based on [60].

Definition 4.1 (Proper Convex Functions). A convex function f : Rn → R is
proper if, for every x ∈ Rn, f(x) > −∞ and there exists at least one point xo
such that f(xo) < +∞.

For the rest of this chapter, f : Rn → R is a proper convex function.
Given such f : Rn → R, we assume ‖e‖2 ≤ η for some given η > 0. As a

program for recovery, we take for an approximation of x# the solution of

min
x

f(x) (4-2a)

subject to ‖Φx− y‖2 ≤ η. (4-2b)

We refer to this optimization problem as the convex recovery program and
derive a deterministic error bound ‖x̂ − x#‖2. Notice that we assume the
existence of a solution x̂ to the optimization problem.

How artificial is this hypothesis? The admissible set is not bounded, since
the linear map Φ is highly non-injective. Still, a continuous function f for which
|f(x)| → ∞ as |x| → ∞ necessarily realizes its minimum x̂. Typical examples
are norms (but not the `0 norm, which is not really a norm).

Example 4.2 (Recovery of Sparse Vectors): Consider an s-sparse vector
x#, i.e, a vector with at most s nonzero entries. It is well known that the `1

norm promotes sparsity ( [12] or [22]). We set f(x) = ‖x‖1.

Matrices X# ∈ Rn1×n2 may be interpreted as vectors in Rn1n2 . A linear
operator Λ : Rn1×n2 → Rm plays the role of the sampling matrix Φ, and
we take f : Rn1×n2 → R. The Schatten 1- norm of a matrix A ∈ Rm×n is
‖A‖S1 = ∑min{m,n}

i=1 |si(A)|.
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Example 4.3 (Recovery of Low Rank Matrices): A common approach
to recover a low rank matrix X# from observations y = ΛX + e is to minimize
the Schatten 1- norm ‖.‖S1 ( [12], [22]). We solve the problem below

min
X

‖X‖S1 (4-3a)

subject to ‖Λ(X)− y‖2 ≤ η. (4-3b)

We first consider some motivation to derive the deterministic error bound
‖x̂ − x#‖2. Suppose for simplicity that a linear system of equations Ax = b

with A ∈ Rn×n invertible and b ∈ Rn is disturbed by an error vector e that
satisfies ‖e‖2 ≤ η. Then the linear system Ax = b becomes Axe = b + e. Set
δ = x− xe and notice that Aδ = e, then ‖δ‖2 = ‖A−1e‖2 ≤ η

sn(A) .
As above, we derive an estimate for ‖x̂− x#‖2 in terms of the minimum

singular value of Φ and the given constant η. However, we only consider
directions in which the function f does not increases. Consequently the singular
value is now restricted to a cone formed by these directions.

Definition 4.4 (Cone) A measurable set K ⊂ Rn is a cone if for every x ∈ K
and τ > 0, τx ∈ K, i.e, a positive homogeneous measurable set.

Definition 4.5 (Descent Cone). The descent cone D(f,x) of f at x is

D(f,x) =
⋃
τ>0
{u ∈ Rn : f(x + τu) ≤ f(x)}.

At a strict global minimum, the descent cone is empty. It is always convex,
but not necessarily closed.

Figure 4.1: The descent cone in the `1 ball at the points x1 and x2. At the
point x1 the descent cone becomes a hyperplane.
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Definition 4.6 (Conic singular values). Let K ⊂ Rn be a cone. The minimum
conic singular value of matrix Φ with respect to K is

sn(Φ,K) = inf
x∈K∩Sn−1

‖Φx‖2.

Theorem 4.7 (A deterministic error bound). Any solution x̂ of the optimiza-
tion problem 4-2 satisfies

‖x̂− x#‖2 ≤
2η

sn(Φ,D(f,x#)) .

Proof. Let u = x̂− x#. We rewrite 4-2 as

min
u
f(x# + u) subject to ‖Φu− e‖2 ≤ η.

Clearly u = 0 is a feasible solution. Therefore any optimal point û must satisfy
f(x# + û) ≤ f(x#) and then û ∈ D(f,x#). Then

sn(Φ,D(f,x#)) = inf
u∈D(f,x#)

‖Φu‖2

‖u‖2
≤ ‖Φu− e‖2 + ‖e‖2

‖u‖2
≤ 2η
‖u‖2

.

�

Figure 4.2: Geometry of convex recovery: The descent cone D(f, x#)
contains the directions u in which f is decreasing at x. The assumption that
‖e‖2 ≤ η added to the fact that ‖Φu − e‖2 ≤ η creates the red tube. Each
optimal point û lies in the intersection between the red and blue area.

Challenge: estimate the statistics of sn(Φ,K) from below.
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4.1
Gaussian Sampling Matrix

In this section we analyze, for a cone K ⊂ Rn, the conic singular value
sn(Φ,K) of the m × n Gaussian sampling matrix Φ, whose rows consist of
independent standard Gaussian vectors. We mime the techniques developed in
Chapter 3. We start with a definition.

Definition 4.8 (Conic Gaussian Width). Let K ⊂ Rn be a cone and g be a
standard Gaussian vector. The conic Gaussian width of K is

w(K) = E sup
u∈K∩Sn−1

〈g, u〉.

See [64], [63] for a geometric interpretation.

Theorem 4.9 (Minimum Gaussian Conic singular value). Let w(K) be the
conic Gaussian width of a cone K ⊂ Rn. Then

sn(Φ,K) ≥
√
m− 1− w(K)− t,

with probability at least 1− 2e−t2/2.

Proof. For (u, v) ∈ (K ∩ Sn−1)× Sm−1, compare the stochastic processes

Xuv = 〈Φu, v〉 and Yuv = 〈g, u〉+ 〈h, v〉, g ∼ N(0, Im), h ∼ N(0, In).

Repeat the same steps of the proof of Theorem 3.15 for an ε-net Nε of K∩Sn−1

and an ε-netMε of Sm−1 to obtain

Esn(Φ,K) = E inf
K∩Sn−1

sup
Sm−1
〈Φu, v〉

≥ E sup
Nε
〈g,−u〉+ E sup

Mε

〈h, v〉 − ε‖Φ‖

≥ −w(K) + sup
Sm−1
〈h, v〉(1− ε)− ε‖Φ‖ (Proposition 2.29)

≥ −w(K) +
√
m− 1(1− ε)− ε‖Φ‖ (Proposition 3.14).

Taking the limit ε → 0+, Esn(Φ,K) ≥
√
m− 1 − w(K). In order to apply

Theorem 3.17, we check that the map ψ(Φ) = infK∩Sn−1 ‖Φu‖2 is 1-Lipschitz
with respect to the Frobenius norm. Indeed,

ψ(Φ) = inf
K∩Sn−1

‖Φu‖2 ≤ inf
K∩Sn−1

(‖Φu‖2 + ‖(Φ− Φ1)u‖2)

≤ inf
K∩Sn−1

(‖Φu‖2 + ‖Φ− Φ1‖)

≤ ψ(Φ1) + ||Φ− Φ1||F .
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For the bound ψ(Φ1)− ψ(Φ), repeat the steps above interchanging Φ and Φ1.
Finally write Φ as a vector Φ′ in Rmn and apply Theorem 3.17. �

Denote [a]+ = max{0, a}. Combine Theorems 4.9 and 4.7 to conclude
that any optimal solution x̂ of the optimization problem 4-2 satisfies

‖x# − x̂‖2 ≤
2η

[
√
m− 1− w(D(f,x#))− t]+

with probability at least 1−2e−t2/2. The case in which the denominator above
is larger than zero is called stable recovery. For stable recovery, we must have
m ≥ C(w2(D(f,x#)) +w(D(f,x#))), for an absolute constant C > 0. We use
a duality argument to estimate the conic Gaussian width w(D(f,x#)).
Definition 4.10 (Polar Cone). Let K ⊂ Rn be a cone. The polar cone Ko is

Ko = {v ∈ Rn : 〈v, k〉 ≤ 0 for all k ∈ K}.

Figure 4.3: Illustration of the Polar Cone.

Denote by d(K, x) the Euclidean distance between the point x ∈ Rn and K.
Proposition 4.11 (Duality for Cones). For x ∈ Rn,

sup
u∈K∩Sn−1

〈u, x〉 ≤ d(x,Ko).
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Proof. We express the Euclidean norm in terms of a functional. Write

d(Ko, x) = inf
v∈Ko
‖v − x‖2 = inf

v∈Ko
sup

u∈Sn−1
〈x− v, u〉.

Apply the standard inf-sup inequality (see Appendix),

d(Ko, x) ≥ sup
u∈Sn−1

inf
v∈Ko
〈x− v, u〉 = sup

u∈Sn−1
[〈x, u〉 − sup

v∈Ko
〈v, u〉].

By the definition of polarity, the supremum is infinite unless u ∈ (Ko)o. Assume
that the left-hand side is finite (the infinite case is trivial). Therefore

d(Ko, x) ≥ sup
(Ko)o∩Sn−1

〈x, u〉 ≥ sup
K∩Sn−1

〈x, u〉.

The last inequality follows from K ⊂ (Ko)o. �

We consider a standard notion in convex analysis [45] that is useful to
analyze optimization problems with non differentiable objective function.

Definition 4.12 (Subdifferential of a convex function). The subdifferential of
f : Rn → R at x ∈ Rn is

∂f(x) = {v ∈ Rn : f(y) ≥ f(x) + 〈v, y − x〉, for all y ∈ Rn}.

Proposition 4.13 (Width of a Descent Cone). Suppose that the subdifferen-
tial of f : Rn → R does not contain the origin and is nonempty. Then the
conic Gaussian width of the the descent cone of f at a point x ∈ Rn satisfies

w2(D(f, x)) ≤ E inf
τ≥0

d2(g, τ∂f).

We use an auxiliary result from convex analysis [45].
Proposition 4.14 (Polarity for Descent Cones). Assume that the subdiffer-
ential ∂f(x) is nonempty and does not contain the origin. Then

Do(f, x) =
⋃
τ≥0

τ∂f(x).

Now we prove Proposition 4.13.
Proof. Proposition 4.11 implies that

w(D(f, x)) = E sup
u∈D(f,x)∩Sn−1

〈g, u〉 ≤ E d(g,Do(f, x)).

Apply Proposition 4.14 to the right hand side

w(D(f, x)) ≤ E d(g,
⋃
τ≥0

τ∂f(x)) = E inf
τ≥0

d(g, τ∂f(x)).
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Square both sides and apply Jensen inequality. �

Corollary 4.15 (Sparse Vectors). Let x# ∈ Rn be an s-sparse vector. A
sufficient condition for stable recovery of the optimization problem 4-2 is that
the m× n Gaussian matrix Φ has at least 2s ln(n

s
) rows.

Proof. We claim that the conic Gaussian width w(D(‖.‖1,x#)) satisfies

w2(D(‖.‖1,x#)) ≤ 2s ln(n
s

) + 2s.

We may assume that the entries of x# are non-increasing and non-negative,
since the Gaussian distribution and the `1 norm are invariant under signed
permutations. By Proposition 4.13, for every τ > 0,

w2(D(‖.‖1,x#)) ≤ Ed2(g, τ∂‖x#‖1).

The subdifferential is of the form

∂‖x#‖1 = {[1s y]t| ‖y‖∞ ≤ 1}, 1s = (1, . . . , 1) ∈ Rs.

Therefore

Ed2(g, τ∂‖x#‖1) =
s∑
j=1

E(gj − τ)2 +
n∑

j=s+1
E[|gj| − τ ]2+.

The first term in the right hand side is 1 + τ 2. From Proposition 2.2,

E[|gj| − τ ]2+ =
∫ ∞
τ

(u− τ)P(|gj| ≥ u)du ≤
∫ ∞
τ

u2(
√

2
π
u−1e−u

2/2)du < e−τ
2/2.

so that
w2(D(‖.‖1,x#)) ≤ s(1 + τ 2) + (n− s)e−τ2/2.

Optimize on τ : τ 2
min = 2 ln(n

s
). Apply Theorems 4.9 and 4.7. �

4.2
The Small Ball Method

In this section we describe Tropp’s modification [60] of Mendelson’s small
ball method [31] for the estimation the conic singular value of non-Gaussian
sampling matrices. Consider a random vector ϕ ∈ Rn and independent
copies ϕi, i ∈ [m] of ϕ. For the rest of this chapter, the sampling matrix
is Φ = [ϕ1 . . . ϕm]t.

Definition 4.16 (Empirical Process). Let (S,S, P ) be a probability space and
let Xi, i ∈ N be coordinate functions of the infinite product probability space
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(Ω,Σ,P) = (SN,SN, PN), Xi : SN → S. Let F be a set of functions f : S → R.
The empirical process corresponding to X1, . . . , Xn indexed by F is

Pnf = 1
n

n∑
i=1

f(Xi).

For a cone K ∈ Rn, set E = K ∩ Sn−1. The minimum conic singular value
sn(Φ,K) is expressed in terms of a nonnegative empirical process

sn(Φ,K) = inf
u∈E

(
m∑
i=1
|〈ϕi, u〉|2)1/2. (4-4)

We now describe the general strategy of the small ball method.

Definition 4.17 (Marginal Tail function). The marginal tail function of the
set E with respect a random vector ϕ is

Qξ(E,ϕ) = inf
u∈E

P(|〈ϕ, u〉| ≥ ξ).

The marginal tail function can be used to quantify the absolute continuity of
the distribution of ϕ [31]. A Rademacher random variable X is the random
variable such that P(X = 1) = P(X = −1) = 1/2.

Definition 4.18 (Mean Empirical Width). Let ε1, . . . , εm be independent
Rademacher random variables. The mean empirical width of the set E with
respect to the random vector ϕ is

Wm(E,ϕ) = E sup
u∈E
〈h, u〉, h = 1√

m

m∑
i=1

εiϕi.

Step 1 is to apply the following remarkable result.

Theorem 4.19 (Lower Bound for Non-negative Empirical Process [31]). For
every ξ > 0 and t > 0

sn(Φ,K) ≥ ξ
√
m Q2ξ(E,ϕ)− 2Wm(E,ϕ)− ξt,

with probability at least 1− e−t2/2.

Step 2 and 3 handles with the terms in the right hand side. For Q2ξ(E,ϕ) use

Proposition 4.20 (Paley-Zygmund inequality). Let Z ≥ 0 be a random
variable with finite variance. For 0 ≤ θ ≤ 1,

P(Z > θ EZ) ≥ (1− θ)2E[Z]2
E[Z2] .
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The proof can be found in the Appendix. For Wm(E,ϕ) use Theorem 2.53
when ϕ is sub-gaussian. In a more general case, apply proposition below

Proposition 4.21 (Mean Empirical Width of a Descent Cone). Fix x ∈ Rn.
Assume that the subdifferential ∂f(x) of the function f is nonempty and does
not contain the origin. For independent copies ϕ1, . . . , ϕm of a random vector
ϕ and independent Rademacher random variables ε1, . . . , εm,

W 2
m(D(f, x) ∩ Sn−1, ϕ) ≤ E inf

τ≥0
d2(h, τ∂f(x)), where h = 1√

m

m∑
i=1

εiϕi.

Proposition 4.21 is proved as Proposition 4.13. Theorem 4.19 requires some
preparation. A random variable X is symmetric if it has the same distribution
of −X. We use the Gine-Zinn symmetrization [24].

Example 4.22 Some classical examples of symmetric random variables:

1. - (Gaussians) If X ∼ N(0, σ2) then −X ∼ N(0, σ2) because the
probability density function of X is an even function.

2. - (Rademacher) If X is a Rademacher random variable, then clearly
P(−X = 1) = P(X = −1) = 1

2 and P(−X = −1) = P(X = 1) = 1
2 . The

random variable −X is also Rademacher.

Theorem 4.23 (Symmetrization for Empirical Process). Let Pnf be an empir-
ical process indexed by F and let ε1, . . . , εn be independent Rademacher random
variables. Then

E sup
f∈F
|
n∑
i=1

f(Xi)− Ef(Xi)| ≤ 2E sup
f∈F
|
n∑
i=1

εif(Xi)|.

The expectation in the third term is taken with respect to both the Rademacher
random variables and Xi, i ∈ [n].

Notice that Z = ∑n
i=1 εif(Xi) is symmetric. The key idea of the proof

is the fact that if X is a symmetric random variable and ε is an independent
Rademacher random variable, then εX has the same distribution of X.

Proof. We use ER to denote the expectation with respect to the random variable
R. Now draw independent copies Yi with the same distribution of Xi. Then

EX sup
f∈F
|
n∑
i=1

f(Xi)−EY f(Yi)| ≤ EX,Y sup
f∈F
|
n∑
i=1

f(Xi)− f(Yi)|

= EX,Y,ε sup
f∈F
|
n∑
i=1

εi(f(Xi)− f(Yi))| := F1
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for X = (X1, . . . , Xn), Y = (Y1, . . . , Yn), ε = (ε1, . . . , εn) and thus

F1 ≤ EX,ε sup
f∈F
|
n∑
i=1

εif(Xi)|+ EY,ε|
n∑
i=1

εif(Yi)| = 2E sup
f∈F
|
n∑
i=1

εif(Xi)|.

For the last step, use that Xi and Yi are i.i.d random variables. �

Another important tool is the Talagrand contraction principle [37].

Theorem 4.24 (Talagrand Contraction Principle). Consider a bounded sub-
set T ⊂ Rn, independent Rademacher random variables ε1, .., εn and 1-
Lipschitz functions φi : R→ R, for i ∈ [n]. Then

E sup
t∈T

n∑
i=1

εiφi(ti) ≤ E sup
t∈T

n∑
i=1

εiti.

Proof. Since each function φi is continuous, the suprema do not change if
we assume that T is closed. The case n = 1 is straightforward. Suppose
by induction that the theorem is proved for n − 1. Now, conditioning on
ε1, . . . , εn−1, we prove that, for t′1 = ∑n−1

i=1 εiφi(ti),

E sup
t∈T

t
′

1 + εnφn(tn) ≤ E sup
t∈T

t
′

n + εn(tn).

As εn is a Rademacher random variable, the inequality reduces to
1
2 sup
t∈T

(t′1−φn(tn))+ 1
2 sup
t∈T

(t′1 +φn(tn)) ≤ 1
2 sup
t∈T

(t′1 + tn)+ 1
2 sup
t∈T

(t′1− tn). (4-5)

Since T is closed, take pairs (t′1a, t
′
na) and (t′1b, t

′
nb) that achieve the supremum

of each summand in the left hand side. Then

sup
t∈T

(t′1 − φn(tn)) + sup
t∈T

(t′1 + φn(tn)) = t
′

1a − φn(tna) + t
′

1b + φn(tnb)

≤ sup
t∈T

(t′1 + tn) + sup
t∈T

(t′1 − tn) (by the Lipschitz hypothesis of φn).

Finally, take the expectation with respect to ε1, . . . , εn−1 in 4-5 and apply the
induction hypothesis. �

We now prove Theorem 4.19.
Proof. We introduce a directional version of the tail function: for u ∈ E, ξ > 0,

Qξ(u) = P(|〈ϕ, u〉| ≥ ξ).

By the Cauchy-Schwartz and Markov inequalities,

( 1
m

m∑
i=1
|〈ϕi, u〉|2)1/2 ≥ 1

m

m∑
i=1
|〈ϕi, u〉| ≥

ξ

m

m∑
i=1
1(|〈ϕi, u〉| ≥ ξ).

DBD
PUC-Rio - Certificação Digital Nº 1812626/CA



Chapter 4. Convex Recovery and the Small Ball Method 65

so that

inf
u∈E

( 1
m

m∑
i=1
|〈ϕi, u〉|2)1/2

≥ ξ inf
u∈E

Q2ξ(u)− ξ

m
sup
u∈E

m∑
i=1

(Q2ξ(u)− 1(|〈ϕi, u〉| ≥ ξ)).
(4-6)

The summands in the right hand side are independent and bounded by one.
By Theorem 2.9, with probability at least 1− e−t2/2,

sup
u∈E

m∑
i=1

(Q2ξ(u)− 1(|〈ϕi, u〉| ≥ ξ))

≤ E sup
u∈E

m∑
i=1

(Q2ξ(u)− 1(|〈ϕi, u〉| ≥ ξ)) + t
√
m,

(4-7)

For ξ > 0, we introduce the soft indicator function ψξ : R→ [0, 1],

ψξ(s) =


0, |s| ≤ ξ

(|s| − ξ)/ξ, ξ < |s| ≤ 2ξ

1, |s| > 2ξ

There are two desired properties of the soft indicator function. Clearly, for all
s ∈ R 1(|s| ≥ 2ξ) ≤ ψξ(s) ≤ 1(|s| ≥ ξ). Moreover, ξψξ is 1-Lipschitz. The first
term in the right hand of 4-7 is

E sup
u∈E

m∑
i=1

(Q2ξ(u)− 1(|〈ϕi, u〉| ≥ ξ))

= E sup
u∈E

m∑
i=1

E1(|〈ϕi, u〉| ≥ 2ξ)− 1(|〈ϕi, u〉| ≥ ξ)

≤ E sup
u∈E

m∑
i=1

Eψξ(〈ϕ, u〉)− ψξ(〈ϕi, u〉)

≤ 2E sup
u∈E

m∑
i=1

εiψξ(〈ϕi, u〉) (by Theorem 4.23)

≤ 2
ξ
E sup
u∈E

m∑
i=1

εi〈ϕi, u〉 (by Theorem 4.24).

Combine the last inequality with 4-6 and 4-7 to obtain

inf
u∈E

( 1
m

m∑
i=1
|〈ϕi, u〉|2)1/2 ≥ inf

u∈E
Q2ξ(u)− ξ

m
(2
ξ
E sup
u∈E

m∑
i=1

εi〈ϕi, u〉+ t
√
m).

�

We now proceed to apply the small ball method to estimate the minimum
conic singular value with a mean zero sub-gaussian random vector ϕ. Notice
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that we need some small ball assumption to guarantee that Q2ξ(E) is bounded
away from the origin, otherwise the estimate in step 1 becomes trivial. Assume:

1. ∃ α > 0, ∀u ∈ Sn−1, α ≤ E[|〈ϕ, u〉|] (the small ball assumption).

2. ∃K > 0, ∀u ∈ Sn−1, ‖〈ϕ, u〉‖ψ2 ≤ K.

Consider a sub-gaussian sampling matrix Φ whose rows are independent copies
of ϕ. Recall [a]+ = max{0, a}.

Theorem 4.25 (Signal Recovery with Sub-gaussian Sampling Matrix). Let ϕ
and Φ as above. Then, for ρ = K/α and absolute constants c, C > 0, any
optimal solution x̂ to the optimization problem 4-2 satisfies

‖x̂− x#‖ ≤ 2η
[cαρ−2√m− CKw(D(f,x#))− αt)]+

.

The small ball method usually splits in three steps.
Proof. (Minimum Conic Singular Value). Apply Theorem 4.19 to obtain

sn(Φ,K) ≥ ξ
√
mQ2ξ(E)− 2Wm(E)− ξt, (4-8)

with probability at least 1− 2e−t2/2.
(Marginal Tail Function). By Proposition 4.20,

P(|〈ϕ, u〉| ≥ 2ξ) ≥ E[|〈ϕ, u〉| − 2ξ]2+
E[|〈ϕ, u〉|2] .

Since ϕ is sub-gaussian

E[|〈ϕ, u〉|2] =
∫ ∞

0
2sP(|〈ϕ, u〉| ≥ s)ds ≤ 4K2.

By the small ball assumption, E[|〈ϕ, u〉| − 2ξ]2+ ≥ (α− 2ξ)2 . For any ξ < α/2,

Q2ξ(E) ≥ (α− 2ξ)2

4K2 . (4-9)

(Mean Empirical Width). By Theorem 2.53,

Wm(E) = E sup
u∈E
〈h, u〉 ≤ g, u〉 = C1Kw(K). (4-10)

Set ξ = α/6. Combine 4-9 and 4-10 with inequality 4-8 to obtain

sn(Φ,K) ≥ C3
α3

K2

√
m− C4Kw(K)− α

6 t,

with probability at least 1− 2e−t2/2. Apply Theorem 4.7. �
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For a stable recovery from sub-gaussian Φ, the number of rows of Φ need
to be at least m ≥ Cρ6w2(D(f, x#)). It has the same order of the estimate for
the Gaussian sampling matrix.

A natural question arises here: how restrictive is the small ball assump-
tion? Typical examples that satisfies the small ball assumption are absolute
continuous distributions with respect to the Lebesgue measure and random
vector formed by independent symmetric bounded entries [60]. A general char-
acterization still unsolved.

The extension of Theorem 4.25 for a general non sub-gaussian random
vector ϕ is a major open problem [7]. An interesting problem in which the
small ball method can be applied to non sub-gaussian ϕ was considered by J.
Tropp [60]. It is the topic of the next chapter.
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5
Phase Retrieval

In this chapter we apply the small ball method to the well known
phase retrieval problem first considered in [28] [44]. The problem occurs when
detectors in X-ray crystallography can only record the squared modulus of
the Fresnel or Fraunhofer diffraction pattern of the radiation that is scattered
from an object. The phase of the optical wave reaching the detector cannot be
measure and much information about the scattered object or the optical field
is lost. Similar situation occurs in the field of image processing in which the
magnitude of the Fourier transforms can be directly measured but its phases
are lost [47]. For a survey about the applications of the phase retrieval problem,
see [13]. We follow [60]

Figure 5.1: The importance of the Fourier phase in image processing [47]. Two
classical images, Cameraman and Lena, are Fourier transformed, their phases
are swapped and then they are inverse Fourier transformed.

5.1
Phase Retrieval Formulation via Convex Optimization

Fix a sampling ensemble ψ1, . . . , ψm ∈ Rn. We want to recover a vector
x# ∈ Rn from observations

yi = 〈ψi,x#〉2, i ∈ [m].

A change of variable (the Lifting method [6]) linearizes the problem. Write

|〈ψ,x〉|2 = ψtxxtψ = Tr(xxtψψt),
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and define

X# = (x#)(x#)t ∈ Rn×n , Ψi = ψiψ
t
i ∈ Rn×n, i ∈ [m].

Clearly x and y induce the same matrix X# if and only if x = ±y, in
accordance to the fact that the observations yi associated to both vectors are
the same. Write yi as linear functions of X#,

yi = Tr(X#Ψi), i ∈ [m].

The standard approach to recover x# (up to sign) is to obtain the matrix X#

as the (hopefully unique) minimizer of the optimization problem [14]

min
X∈Rn×n

Tr(X) (5-1a)

subject to X positive semidefinite and yi = Tr(XΨi). (5-1b)

5.2
Phase Retrieval with The Gaussian Sampling Ensemble

Consider each sampling vector ψi ∈ Rn, i ∈ [m], chosen independently
from a standard Gaussian distribution. The matrices Ψi = ψiψ

t
i , i ∈ [m],

follows a Wishart distribution [65] and its rows are not sub-gaussian, therefore
it is necessary to use Proposition 4.21 in the third step of the small ball method
because Theorem 2.53 does not apply here.

Theorem 5.1 (Phase Retrieval with Gaussian Sampling Ensemble). For ab-
solute constants C, c > 0, if m ≥ Cn, the matrix X# is recovered uniquely
from the optimization problem 5-1 with probability at least 1− e−cm.

The remarkable fact about this theorem is that, with high probability,
the optimal point X# is a matrix of rank one [14].

We need some preparation. The next lemma is adapted from [63] and [65].
Recall that matrix norms ‖A‖ with no indices are L2 norms, ‖A‖ = ‖A‖2→2.

Lemma 5.2 (Covariance estimation). Let X ∈ Rn be a mean zero Gaussian
vector with covariance matrix Σ. Let ψi ∈ Rn, i ∈ [m] be independent copies
of X. Set Σm = 1

m

∑m
i=1 ψiψ

t
i . Then, for an absolute constant C > 0 and for

every u > 0,

‖Σm − Σ‖ ≤ C(
√
n+ u

m
+ n+ u

m
)‖Σ‖,

with probability at least 1− 2e−u.
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Proof. Change variables to convert the vectors X and ψi into isotropic vectors,

Z = Σ−1/2X, Zi = Σ−1/2ψi.

Now write

‖Σm − Σ‖ = ‖Σ1/2RmΣ1/2‖ ≤ ‖Rm‖‖Σ‖, where Rm = 1
m

m∑
i=1

ZiZ
t
i − In.

Consider the m× n random matrix A whose rows are Zt
i . Then

1
m
AtA− In = Rm.

Apply Theorem 2.35 to A. �

Theorem 4.23 extends for random matrices [61] with the same proof.

Theorem 5.3 (Symmetrization for Matrices). Let A1,. . . , An be independent
random matrices of the same size and let ε1,. . . , εn be independent Rademacher
random variables. Then, for every p ≥ 1,

1
2(E‖

n∑
i=1

εiAi‖p)1/p ≤ (E‖
n∑
i=1

Ai − EAi‖p)1/p ≤ 2(E‖
n∑
i=1

εiAi‖p)1/p.

We use some results from Chapter 4 with a systematic alteration: vectors
and matrices will be replaced by matrices and linear maps between spaces of
matrices. Thus, new statements about a matrix X ∈ Rn1×n2 is derived by
interpreting it as a vector X′ ∈ Rn1n2 .

Similarly, a convex proper function f : Rn1×n2 → R and observations
y = ΛX + e with e ∈ Rm and Λ : Rn1×n2 → Rm for ‖e‖2 ≤ η, induce an
optimization problem analogous to the problem 4-2,

min
X

f(X) (5-2a)

subject to ‖ΛX− y‖2 ≤ η. (5-2b)

Again, we assume the existence of a solution X# ∈ Rn1n2 to the problem.

Definition 5.4 (Descent Cone for Matrices). The descent cone D(f,X) of f
at a matrix X ∈ Rn1×n2 is

D(f,X) =
⋃
τ>0
{U ∈ Rn1×n2 : f(X + τU) ≤ f(X)}.
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Recall that ‖.‖F is the Frobenius norm for matrices, induced by the inner
product 〈A,B〉 = Tr(BtA), for A,B ∈ Rn1×n2 . The unit sphere is

Sn1×n2−1
F = {U ∈ Rn1×n2 : ‖U‖F = 1} .

Definition 5.5 (Conic singular values). Let K ∈ Rn1×n2 be a cone. The
minimum conic singular value of the linear map Λ : Rn1×n2 → Rm is

sn(Λ,K) = inf
U∈K∩Sn1×n2−1

F

‖ΛU‖F .

Theorem 5.6 (A deterministic error bound). Any optimal solution X̂ of the
optimization problem 5-2 satisfies

‖X̂ −X#‖F ≤
2η

sn(Λ,D(f,X#)) .

Consider a cone K ∈ Rn1×n2 and set E = Sn1×n2−1
F ∩ K.

Definition 5.7 (Marginal Tail function for Matrices). The marginal tail func-
tion of the set E with respect a random matrix Ψ is

Qξ(E,Ψ) = inf
U∈E

P(|〈Ψ, U〉| ≥ ξ).

Definition 5.8 (Mean Empirical Width for Matrices). Let ε1, . . . , εm be inde-
pendent Rademacher random variables, the mean empirical width of the set E
with respect to the random matrix Ψ is

Wm(E,Ψ) = E sup
U∈E
〈H,U〉, where H = 1√

m

m∑
i=1

εiΨi.

Consider independent copies Ψ1, . . . ,Ψm of the matrix Ψ and a random linear
map of observations Λ : Rn1×n2 → Rm with [Λ(X)]i = 〈Ψi, X〉.
Theorem 5.9 (Theorem 4.19 for Matrices). For every ξ > 0 and t > 0,

sn(Λ,K) ≥ ξ
√
mQ2ξ(E,Ψ)− 2Wm(E,Ψ)− ξt,

with probability at least 1− e−t2/2.

Here is another definition converted from vectors to matrix functions.
Definition 5.10 (Subdifferential for Matrix Functions). The subdifferential of
the proper convex function f : Rn1×n2 → R at X ∈ Rn1×n2 is

∂f(X) = {V ∈ Rn1×n2 : f(Y ) ≥ f(X) + 〈V, Y −X〉, for all Y ∈ Rn1×n2}.

Denote by dF (K, X) the Frobenius distance between the cone K and X.
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Proposition 5.11 (Mean empirical width of a Descent Cone for Matrices).
Fix X ∈ Rn1×n2. Assume that the subdifferential ∂f(X) is nonempty and does
not contain the origin. For independent copies Ψ1, . . . ,Ψm of a random matrix
Ψ and independent Rademacher random variables ε1, . . . , εm,

W 2
m(D(f,U#)∩Sn1×n2−1

F ,Ψ) ≤ E inf
τ≥0

d2
F (H, τ∂f(x)), where H = 1√

m

m∑
i=1

εiΨi.

We prove Theorem 5.1. Equip the space of symmetric matrices Rn×n
sym with the

Frobenius norm. Let λmax(Z) be the maximum eigenvalue Z ∈ Rn×n
sym . Write δij

for the matrix whose only nonzero entry, equal to 1, has indices (i, j).

Proof. We rewrite the convex optimization program 5-1. Let

Φ : Rn×n
sym :→ Rm, [Φ(X)]i = Tr(ΨiX), i ∈ [m].

Let i : Rn×n
sym → R be the penalty indicator function which is zero at

positive semidefinite matrices and infinity otherwise. Consider the convex
proper function f : Rn×n

sym → R,

f(X) = i(X) + Tr(X).

The optimization problem 5-1 becomes

min
X

f(X) (5-3a)

subject to y = Φ(X). (5-3b)

This formulation matches the optimization problem 5-2. By Theorem 5.6,
there exists an unique solution to 5-1 if the minimum conic singular value
sn(Φ,D(f,X#)) > 0 (notice there is no error vector, η = 0). We now argue as
in the small ball method.

(Minimum conic singular value). Let

E = {U ∈ D(f,X#)| ‖U‖F = 1}.

From Theorem 5.9,

sn(Φ,D(f,X#)) ≥ ξ
√
mQ2ξ(E)− 2Wm(E)− ξt, (5-4)

with probability at least 1− e−t2/2.
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(Marginal Tail function). By Proposition 4.20,

P(|〈Ψ1, U〉|2) ≥ 1
2E(|〈Ψ1, U〉|2) ≥ 1

4
E[|〈Ψ1, U〉|2]2
E[|〈Ψ1, U〉|4] .

Apply the Gaussian hypercontractivity inequality (see Appendix) with q = 4,

E(|〈Ψ1, U〉|4)1/4 ≤ 3E(|〈Ψ1, U〉|2)1/2.

Since U is symmetric and ‖U‖F = 1,

E(|〈Ψ1, U〉|2) = 3
m∑
i=1
|uii|2 + 2

m∑
i,j=1
|uij|2 + |

m∑
i=1

uii|2 ≥ 2

Hence, there exists an absolute constant c > 0 such that, for every U ∈ E,

P(|〈Ψ1, U〉|2 ≥ 1) ≥ c. (5-5)

(Mean Empirical Width). Recall that X# ∈ Rn×n
sym is a rank one, positive

semidefinite matrix. Select a basis in Rn in which X# is

X# =
∣∣∣∣∣∣a 0t

0 0

∣∣∣∣∣∣ ,
with a > 0. In the same basis, H is

H =
∣∣∣∣∣∣h11 ht21

h21 H22

∣∣∣∣∣∣ .
By Proposition 5.11, for every τ ≥ 0,

Wm(E) ≤ E [d2
F (H, τ∂f(X#))]1/2.

We claim that the subdifferential ∂f(X#) is

∂f(X#) =

∣∣∣∣∣∣1 0t

0 Y

∣∣∣∣∣∣ ∈ Rn×n
sym | λmax(Y ) ≤ 1

. (5-6)

It is enough to prove that any matrix V ∈ Rn×n
sym satisfying

Tr(Z) ≥ Tr(X#) + 〈V, Z −X#〉, (5-7)

for every positive semidefinite Z ∈ Rn×n
sym , assumes the form described in 5-6.

Denote the entries of Z by zij. Use Z = z11δ11, z11 > 0, in 5-7 to obtain

z11(1− v11) ≥ a(1− v11).
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For z11 = 2a and z11 = a
2 , we obtain (1−v11) ≥ 0 and (1−v11) ≤ 0 respectively,

so that v11 = 1. The proof of v1j = 0 for all j ≥ 2 and vi1 = 0 for all i ≥ 2 is
similar. Now let Z be of the form

Z =
∣∣∣∣∣∣0 0t

0 Z22

∣∣∣∣∣∣ .
Let V22 ∈ R(n−1)×(n−1)

sym be the sub-matrix of V obtained by deleting the first
row and the first column of V . From inequality 5-7,

Tr(Z22) ≥ Tr(Z22V22).

To check that λmax(V22) ≤ 1, consider the decomposition associated with the
spectral theorem, V22 = QDQt, for an orthogonal matrix Q and a real diagonal
matrix D. Set Z22 = QtδiiQ with i ∈ [n] to obtain that Dii ≤ 1 for all i ∈ [n]
and then λmax(V22) ≤ 1. For τ = λmax(H22):

Ed2
F (H, τ∂f(X#)) = E(h11− τ)2 + 2E‖h21‖2 +E inf

λmax(S)≤1
‖H22− τY ‖2

F . (5-8)

The third term in the right hand side is zero by construction. By a direct
calculation, the second is 2(n− 1). For the first,

τ = sup
y∈Sn−2

〈H22y, y〉 = sup
y∈Sn−2

[0 y]H[0 y]t ≤ sup
x∈Sn−1

〈Hx, x〉 = λmax(H)

= 1√
m
λmax(

m∑
i=1

εiψiψ
t
i).

For m ≥ Cn, Lemma 5.2 gives

P( 1√
m
λmax(

m∑
i=1

ψiψ
t
i)) > C1

√
n) ≤ e−c1n.

By Theorem 5.3 and integral identity,

E[τ 2] ≤ C2 E[‖ 1√
m

m∑
i=1

ψiψ
t
i‖2] ≤ C3n.

Combine the estimates for the three terms in 5-8 to obtain

Wm(E) ≤ C4
√
n. (5-9)

Substitute 5-5 and 5-9 into 5-4 to obtain

sn(Φ,D(f,X#)) ≥ C5
√
m− C6

√
n− t

2 ,
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with probability at least 1− et2/2. Set t = C7
√
m and choose m such that the

minimum conic singular value sn(Φ,D(f,X#)) is positive with the required
probability. �

It can be shown that this result is optimal up to absolute constants [14].
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6
Conclusion

In this dissertation we explored the powerful ideas of the small ball
method and some of its connections to non-asymptotic random matrix the-
ory. As an application, we analyzed the performance of convex optimization
programs to reconstruct signals, in particular the phase retrieval problem with
Gaussian sampling ensemble.
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7
Appendix

7.1
Basic Probability Theory
Theorem 7.1 (Markov Inequality [63]). Let X ≥ 0 be a random variable.
Then, for every t > 0,

P(X ≥ t) ≤ EX
t
.

Corollary 7.2 (Chebyshev Inequality [63]). Let X ≥ 0 be a random variable.
Then, for every t > 0,

P(X ≥ t) ≤ E[Xp]
tp

Theorem 7.3 (Integral identity/Layer cake representation [63]). Let X be a
random variable. Then

EX =
∫ ∞

0
P(X > t) dt+

∫ 0

−∞
P(X < t) dt.

Theorem 7.4 (Jensen Inequality [63]). Let X be a random variable and
φ : R→ R be a convex function. Then

φ(EX) ≤ Eφ(X).

Definition 7.5 (Chi-Square Distribution [67]). A random variable X follows
a Chi-Square distribution of degree n if its probability density function is

u ≥ 0, φn(u) = 1
2n/2Γ(n/2)u

(n/2)−1e−u/2.

Theorem 7.6 (Characterization of the Chi-Square Distribution [67]). Let
g1, .., gn be a sequence of standard Gaussian variables. Then the random
variable X = ∑n

i=1 g
2
i has the probability density function of a chi-square

distribution of degree n.

Definition 7.7 (Beta Distribution [67]). A random variable X follows a Beta
distribution with parameters a, b if it has the probability density function

x ∈ [0, 1], pa,b(x) = β(a, b)−1xa−1(1− x)b−1.

Here the constant β(a, b) = Γ(a)Γ(b)
Γ(a+b) is the Beta number.
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Theorem 7.8 (Beta Distribution as ratio of chi-squares [66]). Let X be a
random variable following a chi-square distribution of degree m and let Y be
a random variable following a chi-square distribution of degree n independent
from X. Then the ration X

X+Y follows a Beta distribution with parameters
a = m

2 and b = n
2 .

7.2
Proof of the Paley-Zygmund Inequality

Here we prove Proposition 4.20.
Proof. Write

EZ = E[Z1(Z ≤ θ EZ)] + E[Z1(Z > θ EZ)].

The first summand is at most θ EZ. By the Cauchy-Schwartz inequality
E[Z1(Z > θEZ)] ≤ E[Z2]1/2 P(Z > θEZ)1/2. �

7.3
Proof of the Gaussian Hypercontractivity Inequality

Here we prove the following result.

Theorem 7.9 (Gaussian Hypercontractivity Inequality [9]). Let f(t) =∑k
i=0 ait

k be a polynomial of degree k and let g be a standard Gaussian variable.
Then, for q > 2,

‖f(g)‖q ≤ (q − 1)k/2‖f(g)‖2.

We need some preparation. The functions f : {−1,+1}n → R, with the obvious
operation, give rise to a real vector space V of dimension 2n, in which we define
the inner product

〈f, g〉 = 2−n
∑

x∈{−1,+1}n
f(x)g(x).

An orthonormal basis is defined by the monomials uS(x) = ∏
i∈S xi (as usual,∏

i∈∅ xi = 1). The orthonormal expansion of f in this basis becomes

f(x) =
∑
S⊂[n]

αSuS(x), αS = 〈f, uS〉,

where the summation runs over all subsets S of [n]. Denote the cardinality of
S by |S|. For 1 ≤ p <∞, define the norm ‖f‖Lp = (2−n∑x∈{−1,+1}n f(x)p)1/p.
For γ > 0, consider the linear transformation Tγ : Lq → Lp that maps
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f(x) = ∑
S⊂[n] αSuS(x) to

(Tγf)(x) =
∑
S⊂[n]

γ|S|αSuS(x).

Theorem 7.10 (Bonami-Beckner Inequality). Let 2 < q <∞. Then

‖f‖Lq ≤ ‖Tγf‖L2 , for γ =
√
q − 1.

For the proof and the application below, see [9]. For a random variable X
recall, the norm ‖X‖p = (E|X|p)1/p. We now prove Theorem 7.9.
Proof. Let the entries of a random vector ε = (ε1, . . . , εn) be independent
Rademacher variables. Use the central limit theorem to approximate a Gaus-
sian by a sum of εi: it suffices to show that, for n ≥ 1,

‖f( 1√
n

n∑
i=1

εi)‖q ≤ (q − 1)k/2‖f( 1√
n

n∑
i=1

εi)‖2.

Set f̃(ε1, . . . , εn) = f( 1√
n

∑n
i=1 εi). Use Theorem 7.10 for f̃ , γ =

√
q − 1 > 1:

‖f̃‖2
Lq ≤ ‖Tγ f̃‖2

L2 =
∑

S⊂[n]:|S|≤k
α2
Sγ

2|S| ≤ γ2k ∑
S⊂[n]:|S|≤k

α2
S = γ2k‖f̃‖2

L2 .

Now use that ‖f̃‖Lp = ‖f̃‖p. �

7.4
Functional Analysis

Denote C∞o (Rn) by the space of all real valued smooth functions with
compact support in Rn and supp(ρn) by the support set of the function ρn.

Definition 7.11 (Mollifiers [11]). A sequence of compactly supported molli-
fiers in Rn is any sequence of functions ρn : Rn → R satisfying

ρn ∈ C∞o (Rn), supp(ρn) ⊂ (B(0, 1
n

)), ρn ≥ 0, ||ρn||L1 = 1.

A sequence of functions {uk}k∈N ∈ C∞o (Rn) converges sequentially to a function
u ∈ C∞o (Rn) if the support of every function uk is contained in the same
compact set K and all partial derivatives of uk converges uniformly to the
respective partial derivatives of u. Denote this convergence by uk → u.

Definition 7.12 (Distributions [32]). A distribution l is a linear functional
of the space C∞o (Rn) which is continuous with respect to the sequential conver-
gence: uk → u implies that l(uk)→ l(u).
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Definition 7.13 (Distributional Derivative [22]). The distributional deriva-
tive of a distribution l with respect to the coordinate xi is the continuous linear
functional

∂l

∂xi
(φ) = −l( ∂φ

∂xi
), for all φ ∈ C∞o (Rn).

7.5
Convex Analysis
Theorem 7.14 (Inf-Sup Inequality [10]). For a function f : A×B → R,

sup
a∈A

inf
b∈B

f(a, b) ≤ inf
b∈B

sup
a∈A

f(a, b).
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